Spaces:
Runtime error
Runtime error
from langchain.document_loaders import TextLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_google_genai import GoogleGenerativeAIEmbeddings | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain_pinecone import PineconeVectorStore | |
import os | |
from dotenv import load_dotenv | |
import logging | |
load_dotenv() | |
logging.basicConfig(level=logging.INFO,format = '[%(asctime)s]: %(message)s') | |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001",google_api_key="AIzaSyAhgj1-KUauE7QhOOUdVJrvffZ9mHNvCms") | |
# print(os.path.exists("Data/")) # Check if directory exists | |
# print(os.listdir("Data/")) | |
loader = TextLoader("Data/monto-solutions.txt") | |
docs = loader.load() | |
logging.info("Documents created successfully") | |
splitter = RecursiveCharacterTextSplitter(chunk_size = 500 , chunk_overlap = 100) | |
chunks = splitter.split_documents(docs) | |
logging.info("Chunks created successfully") | |
# print(len(chunks)) | |
logging.info("Initializing pinecone database") | |
try: | |
doc_search = PineconeVectorStore.from_documents( | |
documents=chunks, | |
index_name = 'customer-support', | |
embedding = embeddings | |
) | |
logging.info("Chunks and embeddings stored successfully") | |
except Exception as e: | |
logging.info(f"Failed to create the embeddings, Error occured: {e}") |