import torch | |
import gradio as gr | |
from typing import Dict | |
from transformers import pipeline | |
def phishing_not_phishing_classifier(text:str) -> Dict[str, float]: | |
phishing_not_phishing_classifier_pipeline = pipeline(task="text-classification", | |
model="twoweeksgetheart/learn_hf_phishing_not_phishing_text_classifier", | |
batch_size=32, | |
device="cuda" if torch.cuda.is_available() else "cpu", | |
top_k=None) | |
outputs = phishing_not_phishing_classifier_pipeline(text)[0] | |
outpid_dict = {} | |
for item in outputs: | |
outpid_dict[item["label"]] = item["score"] | |
return outpid_dict | |
description = """ | |
Является ли сообщение фишингом или нет | |
""" | |
demo = gr.Interface( | |
fn=phishing_not_phishing_classifier, | |
inputs="text", | |
outputs=gr.Label(num_top_classes=2), | |
title="Классификация фишинговых сообщений", | |
description=description, | |
) | |
if __name__ == "__main__": | |
demo.launch() | |