Spaces:
Sleeping
Sleeping
File size: 4,297 Bytes
93f1f28 931b10a 2c8378d 877d93d b63e59c 0c96891 f65e7b6 2c8378d f65e7b6 2c8378d 931b10a 877d93d 931b10a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
#-*- encoding: utf-8 -*-
import gradio as gr
from matplotlib import gridspec
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import tensorflow as tf
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
feature_extractor = SegformerFeatureExtractor.from_pretrained(
"nvidia/segformer-b4-finetuned-cityscapes-1024-1024"
)
model = TFSegformerForSemanticSegmentation.from_pretrained(
"nvidia/segformer-b4-finetuned-cityscapes-1024-1024"
)
def ade_palette():
"""ADE20K palette that maps each class to RGB values."""
return [
[0, 0, 0], # black
[140, 140, 140], # gray
[95, 0, 255], # purple
[221, 126, 255], # light purple
[1, 0, 255], # blue
[0, 216, 255], # light blue
[35, 164, 26], # green
[29, 219, 22], # light green
[255, 228, 0], # yellow
[255, 187, 0], # light orange
[255, 94, 0], # orange
[255, 0, 0], # red
[255, 167, 167], # pink
[153, 56, 0], # brown
[207, 166, 54],
[180, 40, 180],
[120, 56, 123],
[45, 56, 28],
[67, 56, 123],
]
labels_list = []
with open(r'labels.txt', 'r') as fp:
for line in fp:
labels_list.append(line[:-1])
colormap = np.asarray(ade_palette())
def label_to_color_image(label):
if label.ndim != 2:
raise ValueError("Expect 2-D input label")
if np.max(label) >= len(colormap):
raise ValueError("label value too large.")
return colormap[label]
def draw_plot(pred_img, seg):
fig = plt.figure(figsize=(20, 15))
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
plt.subplot(grid_spec[0])
plt.imshow(pred_img)
plt.axis('off')
LABEL_NAMES = np.asarray(labels_list)
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
unique_labels = np.unique(seg.numpy().astype("uint8"))
ax = plt.subplot(grid_spec[1])
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
ax.yaxis.tick_right()
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
plt.xticks([], [])
ax.tick_params(width=0.0, labelsize=25)
return fig
def sepia(input_img):
input_img = Image.fromarray(input_img)
inputs = feature_extractor(images=input_img, return_tensors="tf")
outputs = model(**inputs)
logits = outputs.logits
logits = tf.transpose(logits, [0, 2, 3, 1])
logits = tf.image.resize(
logits, input_img.size[::-1]
) # We reverse the shape of `image` because `image.size` returns width and height.
seg = tf.math.argmax(logits, axis=-1)[0]
color_seg = np.zeros(
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
) # height, width, 3
for label, color in enumerate(colormap):
color_seg[seg.numpy() == label, :] = color
# Show image + mask
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
pred_img = pred_img.astype(np.uint8)
fig = draw_plot(pred_img, seg)
return fig
with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
with gr.Tab("Semantic Segmentation with Cityscape Image"):
with gr.Row():
with gr.Column(scale=1):
cities = [
"city_1.jpg", "city_2.jpg", "city_3.jpg",
"city_4.jpg", "city_5.jpg", "city_6.jpg",
"city_7.jpg", "city_8.jpg",
]
input_gallery = gr.Gallery(label="Select Image", value=cities, columns=4)
input_image = gr.Image(label="Uploaded Image", interactive=True, type="numpy")
input_gallery.change(fn=lambda x: x, inputs=input_gallery, outputs=input_image)
process_button = gr.Button("Process Image")
with gr.Column(scale=2):
output_image = gr.Plot(label="Segmented Image")
process_button.click(sepia, inputs=input_image, outputs=output_image)
with gr.Accordion("Information"):
gr.Markdown("A Gradio-based page which performs Semantic Segmentation into 19 classes for an example image")
demo.launch()
|