import json import torch import torch.nn as nn def match_name_keywords(n: str, name_keywords: list): out = False for b in name_keywords: if b in n: out = True break return out def get_param_dict(args, model_without_ddp: nn.Module): try: param_dict_type = args.param_dict_type except: param_dict_type = 'default' assert param_dict_type in ['default', 'ddetr_in_mmdet', 'large_wd'] # by default if param_dict_type == 'default': param_dicts = [{ 'params': [ p for n, p in model_without_ddp.named_parameters() if 'backbone' not in n and p.requires_grad ] }, { 'params': [ p for n, p in model_without_ddp.named_parameters() if 'backbone' in n and p.requires_grad ], 'lr': args.lr_backbone, }] return param_dicts if param_dict_type == 'ddetr_in_mmdet': param_dicts = [{ 'params': [ p for n, p in model_without_ddp.named_parameters() if not match_name_keywords(n, args.lr_backbone_names) and not match_name_keywords(n, args.lr_linear_proj_names) and p.requires_grad ], 'lr': args.lr, }, { 'params': [ p for n, p in model_without_ddp.named_parameters() if match_name_keywords(n, args.lr_backbone_names) and p.requires_grad ], 'lr': args.lr_backbone, }, { 'params': [ p for n, p in model_without_ddp.named_parameters() if match_name_keywords(n, args.lr_linear_proj_names) and p.requires_grad ], 'lr': args.lr * args.lr_linear_proj_mult, }] return param_dicts if param_dict_type == 'large_wd': param_dicts = [{ 'params': [ p for n, p in model_without_ddp.named_parameters() if not match_name_keywords(n, ['backbone']) and not match_name_keywords(n, ['norm', 'bias']) and p.requires_grad ], }, { 'params': [ p for n, p in model_without_ddp.named_parameters() if match_name_keywords(n, ['backbone']) and match_name_keywords(n, ['norm', 'bias']) and p.requires_grad ], 'lr': args.lr_backbone, 'weight_decay': 0.0, }, { 'params': [ p for n, p in model_without_ddp.named_parameters() if match_name_keywords(n, ['backbone']) and not match_name_keywords(n, ['norm', 'bias']) and p.requires_grad ], 'lr': args.lr_backbone, 'weight_decay': args.weight_decay, }, { 'params': [ p for n, p in model_without_ddp.named_parameters() if not match_name_keywords(n, ['backbone']) and match_name_keywords(n, ['norm', 'bias']) and p.requires_grad ], 'lr': args.lr, 'weight_decay': 0.0, }] return param_dicts