# Copyright (c) OpenMMLab. All rights reserved. import json import os.path as osp import sys import tempfile import unittest.mock as mock from collections import OrderedDict from unittest.mock import MagicMock, patch import pytest import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, Dataset from mmcv.fileio.file_client import PetrelBackend from mmcv.runner import DistEvalHook as BaseDistEvalHook from mmcv.runner import EpochBasedRunner from mmcv.runner import EvalHook as BaseEvalHook from mmcv.runner import IterBasedRunner from mmcv.utils import get_logger, scandir sys.modules['petrel_client'] = MagicMock() sys.modules['petrel_client.client'] = MagicMock() class ExampleDataset(Dataset): def __init__(self): self.index = 0 self.eval_result = [1, 4, 3, 7, 2, -3, 4, 6] def __getitem__(self, idx): results = dict(x=torch.tensor([1])) return results def __len__(self): return 1 @mock.create_autospec def evaluate(self, results, logger=None): pass class EvalDataset(ExampleDataset): def evaluate(self, results, logger=None): acc = self.eval_result[self.index] output = OrderedDict( acc=acc, index=self.index, score=acc, loss_top=acc) self.index += 1 return output class Model(nn.Module): def __init__(self): super().__init__() self.param = nn.Parameter(torch.tensor([1.0])) def forward(self, x, **kwargs): return self.param * x def train_step(self, data_batch, optimizer, **kwargs): return {'loss': torch.sum(self(data_batch['x']))} def val_step(self, data_batch, optimizer, **kwargs): return {'loss': torch.sum(self(data_batch['x']))} def _build_epoch_runner(): model = Model() tmp_dir = tempfile.mkdtemp() runner = EpochBasedRunner( model=model, work_dir=tmp_dir, logger=get_logger('demo')) return runner def _build_iter_runner(): model = Model() tmp_dir = tempfile.mkdtemp() runner = IterBasedRunner( model=model, work_dir=tmp_dir, logger=get_logger('demo')) return runner class EvalHook(BaseEvalHook): _default_greater_keys = ['acc', 'top'] _default_less_keys = ['loss', 'loss_top'] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) class DistEvalHook(BaseDistEvalHook): greater_keys = ['acc', 'top'] less_keys = ['loss', 'loss_top'] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def test_eval_hook(): with pytest.raises(AssertionError): # `save_best` should be a str test_dataset = Model() data_loader = DataLoader(test_dataset) EvalHook(data_loader, save_best=True) with pytest.raises(TypeError): # dataloader must be a pytorch DataLoader test_dataset = Model() data_loader = [DataLoader(test_dataset)] EvalHook(data_loader) with pytest.raises(ValueError): # key_indicator must be valid when rule_map is None test_dataset = ExampleDataset() data_loader = DataLoader(test_dataset) EvalHook(data_loader, save_best='unsupport') with pytest.raises(KeyError): # rule must be in keys of rule_map test_dataset = ExampleDataset() data_loader = DataLoader(test_dataset) EvalHook(data_loader, save_best='auto', rule='unsupport') # if eval_res is an empty dict, print a warning information with pytest.warns(UserWarning) as record_warnings: class _EvalDataset(ExampleDataset): def evaluate(self, results, logger=None): return {} test_dataset = _EvalDataset() data_loader = DataLoader(test_dataset) eval_hook = EvalHook(data_loader, save_best='auto') runner = _build_epoch_runner() runner.register_hook(eval_hook) runner.run([data_loader], [('train', 1)], 1) # Since there will be many warnings thrown, we just need to check if the # expected exceptions are thrown expected_message = ('Since `eval_res` is an empty dict, the behavior to ' 'save the best checkpoint will be skipped in this ' 'evaluation.') for warning in record_warnings: if str(warning.message) == expected_message: break else: assert False test_dataset = ExampleDataset() loader = DataLoader(test_dataset) model = Model() data_loader = DataLoader(test_dataset) eval_hook = EvalHook(data_loader, save_best=None) with tempfile.TemporaryDirectory() as tmpdir: # total_epochs = 1 logger = get_logger('test_eval') runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger) runner.register_hook(eval_hook) runner.run([loader], [('train', 1)], 1) test_dataset.evaluate.assert_called_with( test_dataset, [torch.tensor([1])], logger=runner.logger) assert runner.meta is None or 'best_score' not in runner.meta[ 'hook_msgs'] assert runner.meta is None or 'best_ckpt' not in runner.meta[ 'hook_msgs'] # when `save_best` is set to 'auto', first metric will be used. loader = DataLoader(EvalDataset()) model = Model() data_loader = DataLoader(EvalDataset()) eval_hook = EvalHook(data_loader, interval=1, save_best='auto') with tempfile.TemporaryDirectory() as tmpdir: logger = get_logger('test_eval') runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger) runner.register_checkpoint_hook(dict(interval=1)) runner.register_hook(eval_hook) runner.run([loader], [('train', 1)], 8) ckpt_path = osp.join(tmpdir, 'best_acc_epoch_4.pth') assert runner.meta['hook_msgs']['best_ckpt'] == ckpt_path assert osp.exists(ckpt_path) assert runner.meta['hook_msgs']['best_score'] == 7 # total_epochs = 8, return the best acc and corresponding epoch loader = DataLoader(EvalDataset()) model = Model() data_loader = DataLoader(EvalDataset()) eval_hook = EvalHook(data_loader, interval=1, save_best='acc') with tempfile.TemporaryDirectory() as tmpdir: logger = get_logger('test_eval') runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger) runner.register_checkpoint_hook(dict(interval=1)) runner.register_hook(eval_hook) runner.run([loader], [('train', 1)], 8) ckpt_path = osp.join(tmpdir, 'best_acc_epoch_4.pth') assert runner.meta['hook_msgs']['best_ckpt'] == ckpt_path assert osp.exists(ckpt_path) assert runner.meta['hook_msgs']['best_score'] == 7 # total_epochs = 8, return the best loss_top and corresponding epoch loader = DataLoader(EvalDataset()) model = Model() data_loader = DataLoader(EvalDataset()) eval_hook = EvalHook(data_loader, interval=1, save_best='loss_top') with tempfile.TemporaryDirectory() as tmpdir: logger = get_logger('test_eval') runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger) runner.register_checkpoint_hook(dict(interval=1)) runner.register_hook(eval_hook) runner.run([loader], [('train', 1)], 8) ckpt_path = osp.join(tmpdir, 'best_loss_top_epoch_6.pth') assert runner.meta['hook_msgs']['best_ckpt'] == ckpt_path assert osp.exists(ckpt_path) assert runner.meta['hook_msgs']['best_score'] == -3 # total_epochs = 8, return the best score and corresponding epoch data_loader = DataLoader(EvalDataset()) eval_hook = EvalHook( data_loader, interval=1, save_best='score', rule='greater') with tempfile.TemporaryDirectory() as tmpdir: logger = get_logger('test_eval') runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger) runner.register_checkpoint_hook(dict(interval=1)) runner.register_hook(eval_hook) runner.run([loader], [('train', 1)], 8) ckpt_path = osp.join(tmpdir, 'best_score_epoch_4.pth') assert runner.meta['hook_msgs']['best_ckpt'] == ckpt_path assert osp.exists(ckpt_path) assert runner.meta['hook_msgs']['best_score'] == 7 # total_epochs = 8, return the best score using less compare func # and indicate corresponding epoch data_loader = DataLoader(EvalDataset()) eval_hook = EvalHook(data_loader, save_best='acc', rule='less') with tempfile.TemporaryDirectory() as tmpdir: logger = get_logger('test_eval') runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger) runner.register_checkpoint_hook(dict(interval=1)) runner.register_hook(eval_hook) runner.run([loader], [('train', 1)], 8) ckpt_path = osp.join(tmpdir, 'best_acc_epoch_6.pth') assert runner.meta['hook_msgs']['best_ckpt'] == ckpt_path assert osp.exists(ckpt_path) assert runner.meta['hook_msgs']['best_score'] == -3 # Test the EvalHook when resume happened data_loader = DataLoader(EvalDataset()) eval_hook = EvalHook(data_loader, save_best='acc') with tempfile.TemporaryDirectory() as tmpdir: logger = get_logger('test_eval') runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger) runner.register_checkpoint_hook(dict(interval=1)) runner.register_hook(eval_hook) runner.run([loader], [('train', 1)], 2) old_ckpt_path = osp.join(tmpdir, 'best_acc_epoch_2.pth') assert runner.meta['hook_msgs']['best_ckpt'] == old_ckpt_path assert osp.exists(old_ckpt_path) assert runner.meta['hook_msgs']['best_score'] == 4 resume_from = old_ckpt_path loader = DataLoader(ExampleDataset()) eval_hook = EvalHook(data_loader, save_best='acc') runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger) runner.register_checkpoint_hook(dict(interval=1)) runner.register_hook(eval_hook) runner.resume(resume_from) assert runner.meta['hook_msgs']['best_ckpt'] == old_ckpt_path assert osp.exists(old_ckpt_path) assert runner.meta['hook_msgs']['best_score'] == 4 runner.run([loader], [('train', 1)], 8) ckpt_path = osp.join(tmpdir, 'best_acc_epoch_4.pth') assert runner.meta['hook_msgs']['best_ckpt'] == ckpt_path assert osp.exists(ckpt_path) assert runner.meta['hook_msgs']['best_score'] == 7 assert not osp.exists(old_ckpt_path) # test EvalHook with customer test_fn and greater/less keys loader = DataLoader(EvalDataset()) model = Model() data_loader = DataLoader(EvalDataset()) eval_hook = EvalHook( data_loader, save_best='acc', test_fn=mock.MagicMock(return_value={}), greater_keys=[], less_keys=['acc']) with tempfile.TemporaryDirectory() as tmpdir: logger = get_logger('test_eval') runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger) runner.register_checkpoint_hook(dict(interval=1)) runner.register_hook(eval_hook) runner.run([loader], [('train', 1)], 8) ckpt_path = osp.join(tmpdir, 'best_acc_epoch_6.pth') assert runner.meta['hook_msgs']['best_ckpt'] == ckpt_path assert osp.exists(ckpt_path) assert runner.meta['hook_msgs']['best_score'] == -3 # test EvalHook with specified `out_dir` loader = DataLoader(EvalDataset()) model = Model() data_loader = DataLoader(EvalDataset()) out_dir = 's3://user/data' eval_hook = EvalHook( data_loader, interval=1, save_best='auto', out_dir=out_dir) with patch.object(PetrelBackend, 'put') as mock_put, \ patch.object(PetrelBackend, 'remove') as mock_remove, \ patch.object(PetrelBackend, 'isfile') as mock_isfile, \ tempfile.TemporaryDirectory() as tmpdir: logger = get_logger('test_eval') runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger) runner.register_checkpoint_hook(dict(interval=1)) runner.register_hook(eval_hook) runner.run([loader], [('train', 1)], 8) basename = osp.basename(runner.work_dir.rstrip(osp.sep)) ckpt_path = f'{out_dir}/{basename}/best_acc_epoch_4.pth' assert runner.meta['hook_msgs']['best_ckpt'] == ckpt_path assert runner.meta['hook_msgs']['best_score'] == 7 assert mock_put.call_count == 3 assert mock_remove.call_count == 2 assert mock_isfile.call_count == 2 @patch('mmcv.engine.single_gpu_test', MagicMock) @patch('mmcv.engine.multi_gpu_test', MagicMock) @pytest.mark.parametrize('EvalHookParam', [EvalHook, DistEvalHook]) @pytest.mark.parametrize('_build_demo_runner,by_epoch', [(_build_epoch_runner, True), (_build_iter_runner, False)]) def test_start_param(EvalHookParam, _build_demo_runner, by_epoch): # create dummy data dataloader = DataLoader(EvalDataset()) # 0.1. dataloader is not a DataLoader object with pytest.raises(TypeError): EvalHookParam(dataloader=MagicMock(), interval=-1) # 0.2. negative interval with pytest.raises(ValueError): EvalHookParam(dataloader, interval=-1) # 0.3. negative start with pytest.raises(ValueError): EvalHookParam(dataloader, start=-1) # 1. start=None, interval=1: perform evaluation after each epoch. runner = _build_demo_runner() evalhook = EvalHookParam(dataloader, interval=1, by_epoch=by_epoch) evalhook.evaluate = MagicMock() runner.register_hook(evalhook) runner.run([dataloader], [('train', 1)], 2) assert evalhook.evaluate.call_count == 2 # after epoch 1 & 2 # 2. start=1, interval=1: perform evaluation after each epoch. runner = _build_demo_runner() evalhook = EvalHookParam( dataloader, start=1, interval=1, by_epoch=by_epoch) evalhook.evaluate = MagicMock() runner.register_hook(evalhook) runner.run([dataloader], [('train', 1)], 2) assert evalhook.evaluate.call_count == 2 # after epoch 1 & 2 # 3. start=None, interval=2: perform evaluation after epoch 2, 4, 6, etc runner = _build_demo_runner() evalhook = EvalHookParam(dataloader, interval=2, by_epoch=by_epoch) evalhook.evaluate = MagicMock() runner.register_hook(evalhook) runner.run([dataloader], [('train', 1)], 2) assert evalhook.evaluate.call_count == 1 # after epoch 2 # 4. start=1, interval=2: perform evaluation after epoch 1, 3, 5, etc runner = _build_demo_runner() evalhook = EvalHookParam( dataloader, start=1, interval=2, by_epoch=by_epoch) evalhook.evaluate = MagicMock() runner.register_hook(evalhook) runner.run([dataloader], [('train', 1)], 3) assert evalhook.evaluate.call_count == 2 # after epoch 1 & 3 # 5. start=0, interval=1: perform evaluation after each epoch and # before epoch 1. runner = _build_demo_runner() evalhook = EvalHookParam(dataloader, start=0, by_epoch=by_epoch) evalhook.evaluate = MagicMock() runner.register_hook(evalhook) runner.run([dataloader], [('train', 1)], 2) assert evalhook.evaluate.call_count == 3 # before epoch1 and after e1 & e2 # 6. resuming from epoch i, start = x (x<=i), interval =1: perform # evaluation after each epoch and before the first epoch. runner = _build_demo_runner() evalhook = EvalHookParam(dataloader, start=1, by_epoch=by_epoch) evalhook.evaluate = MagicMock() runner.register_hook(evalhook) if by_epoch: runner._epoch = 2 else: runner._iter = 2 runner.run([dataloader], [('train', 1)], 3) assert evalhook.evaluate.call_count == 2 # before & after epoch 3 # 7. resuming from epoch i, start = i+1/None, interval =1: perform # evaluation after each epoch. runner = _build_demo_runner() evalhook = EvalHookParam(dataloader, start=2, by_epoch=by_epoch) evalhook.evaluate = MagicMock() runner.register_hook(evalhook) if by_epoch: runner._epoch = 1 else: runner._iter = 1 runner.run([dataloader], [('train', 1)], 3) assert evalhook.evaluate.call_count == 2 # after epoch 2 & 3 @pytest.mark.parametrize('runner,by_epoch,eval_hook_priority', [(EpochBasedRunner, True, 'NORMAL'), (EpochBasedRunner, True, 'LOW'), (IterBasedRunner, False, 'LOW')]) def test_logger(runner, by_epoch, eval_hook_priority): loader = DataLoader(EvalDataset()) model = Model() data_loader = DataLoader(EvalDataset()) eval_hook = EvalHook( data_loader, interval=1, by_epoch=by_epoch, save_best='acc') with tempfile.TemporaryDirectory() as tmpdir: logger = get_logger('test_logger') optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9) runner = EpochBasedRunner( model=model, optimizer=optimizer, work_dir=tmpdir, logger=logger) runner.register_logger_hooks( dict( interval=1, hooks=[dict(type='TextLoggerHook', by_epoch=by_epoch)])) runner.register_timer_hook(dict(type='IterTimerHook')) runner.register_hook(eval_hook, priority=eval_hook_priority) runner.run([loader], [('train', 1)], 1) path = osp.join(tmpdir, next(scandir(tmpdir, '.json'))) with open(path) as fr: fr.readline() # skip the first line which is `hook_msg` train_log = json.loads(fr.readline()) assert train_log['mode'] == 'train' and 'time' in train_log val_log = json.loads(fr.readline()) assert val_log['mode'] == 'val' and 'time' not in val_log