# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from torch.autograd import gradcheck from mmcv.ops import DynamicScatter if torch.__version__ == 'parrots': pytest.skip('not supported in parrots now', allow_module_level=True) @pytest.mark.skipif( not torch.cuda.is_available(), reason='requires CUDA support') def test_dynamic_scatter(): dsmean = DynamicScatter([0.32, 0.32, 6], [-74.88, -74.88, -2, 74.88, 74.88, 4], True) dsmax = DynamicScatter([0.32, 0.32, 6], [-74.88, -74.88, -2, 74.88, 74.88, 4], False) # test empty input empty_feats = torch.empty(size=(0, 3), dtype=torch.float32, device='cuda') empty_coors = torch.empty(size=(0, 3), dtype=torch.int32, device='cuda') empty_feats.requires_grad_() empty_feats_out_mean, empty_coors_out_mean = dsmean( empty_feats, empty_coors) empty_feats_out_mean.sum().backward() empty_feats_out_max, empty_coors_out_max = dsmax(empty_feats, empty_coors) empty_feats_out_max.sum().backward() assert empty_feats_out_mean.shape == empty_feats.shape assert empty_feats_out_max.shape == empty_feats.shape assert empty_coors_out_mean.shape == empty_coors.shape assert empty_coors_out_max.shape == empty_coors.shape # test empty reduced output empty_o_feats = torch.rand( size=(200000, 3), dtype=torch.float32, device='cuda') * 100 - 50 empty_o_coors = torch.randint( low=-1, high=0, size=(200000, 3), dtype=torch.int32, device='cuda') empty_o_feats.requires_grad_() empty_o_feats_out_mean, empty_o_coors_out_mean = dsmean( empty_o_feats, empty_o_coors) empty_o_feats_out_mean.sum().backward() assert (empty_o_feats.grad == 0).all() empty_o_feats_out_max, empty_o_coors_out_max = dsmax( empty_o_feats, empty_o_coors) empty_o_feats_out_max.sum().backward() assert (empty_o_feats.grad == 0).all() # test non-empty input feats = torch.rand( size=(200000, 3), dtype=torch.float32, device='cuda') * 100 - 50 coors = torch.randint( low=-1, high=20, size=(200000, 3), dtype=torch.int32, device='cuda') ref_voxel_coors = coors.unique(dim=0, sorted=True) ref_voxel_coors = ref_voxel_coors[ref_voxel_coors.min(dim=-1).values >= 0] ref_voxel_feats_mean = [] ref_voxel_feats_max = [] for ref_voxel_coor in ref_voxel_coors: voxel_mask = (coors == ref_voxel_coor).all(dim=-1) ref_voxel_feats_mean.append(feats[voxel_mask].mean(dim=0)) ref_voxel_feats_max.append(feats[voxel_mask].max(dim=0).values) ref_voxel_feats_mean = torch.stack(ref_voxel_feats_mean) ref_voxel_feats_max = torch.stack(ref_voxel_feats_max) feats_out_mean, coors_out_mean = dsmean(feats, coors) seq_mean = (coors_out_mean[:, 0] * 400 + coors_out_mean[:, 1] * 20 + coors_out_mean[:, 2]).argsort() feats_out_mean = feats_out_mean[seq_mean] coors_out_mean = coors_out_mean[seq_mean] feats_out_max, coors_out_max = dsmax(feats, coors) seq_max = (coors_out_max[:, 0] * 400 + coors_out_max[:, 1] * 20 + coors_out_max[:, 2]).argsort() feats_out_max = feats_out_max[seq_max] coors_cout_max = coors_out_max[seq_max] assert (coors_out_mean == ref_voxel_coors).all() assert torch.allclose( feats_out_mean, ref_voxel_feats_mean, atol=1e-2, rtol=1e-5) assert (coors_cout_max == ref_voxel_coors).all() assert torch.allclose( feats_out_max, ref_voxel_feats_max, atol=1e-2, rtol=1e-5) # test non-empty input without any point out of bound feats = torch.rand( size=(200000, 3), dtype=torch.float32, device='cuda') * 100 - 50 coors = torch.randint( low=0, high=20, size=(200000, 3), dtype=torch.int32, device='cuda') ref_voxel_coors = coors.unique(dim=0, sorted=True) ref_voxel_coors = ref_voxel_coors[ref_voxel_coors.min(dim=-1).values >= 0] ref_voxel_feats_mean = [] ref_voxel_feats_max = [] for ref_voxel_coor in ref_voxel_coors: voxel_mask = (coors == ref_voxel_coor).all(dim=-1) ref_voxel_feats_mean.append(feats[voxel_mask].mean(dim=0)) ref_voxel_feats_max.append(feats[voxel_mask].max(dim=0).values) ref_voxel_feats_mean = torch.stack(ref_voxel_feats_mean) ref_voxel_feats_max = torch.stack(ref_voxel_feats_max) feats_out_mean, coors_out_mean = dsmean(feats, coors) seq_mean = (coors_out_mean[:, 0] * 400 + coors_out_mean[:, 1] * 20 + coors_out_mean[:, 2]).argsort() feats_out_mean = feats_out_mean[seq_mean] coors_out_mean = coors_out_mean[seq_mean] feats_out_max, coors_out_max = dsmax(feats, coors) seq_max = (coors_out_max[:, 0] * 400 + coors_out_max[:, 1] * 20 + coors_out_max[:, 2]).argsort() feats_out_max = feats_out_max[seq_max] coors_cout_max = coors_out_max[seq_max] assert (coors_out_mean == ref_voxel_coors).all() assert torch.allclose( feats_out_mean, ref_voxel_feats_mean, atol=1e-2, rtol=1e-5) assert (coors_cout_max == ref_voxel_coors).all() assert torch.allclose( feats_out_max, ref_voxel_feats_max, atol=1e-2, rtol=1e-5) # test grad # feats = torch.rand( size=(100, 4), dtype=torch.float32, device='cuda') * 100 - 50 coors = torch.randint( low=-1, high=3, size=(100, 3), dtype=torch.int32, device='cuda') feats.requires_grad_() gradcheck(dsmean, (feats, coors), eps=1e-2, atol=1e-2, rtol=1e-5) gradcheck(dsmax, (feats, coors), eps=1e-2, atol=1e-2, rtol=1e-5)