# Copyright (c) OpenMMLab. All rights reserved. import os import numpy as np import pytest import torch from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE _USING_PARROTS = True try: from parrots.autograd import gradcheck except ImportError: from torch.autograd import gradcheck _USING_PARROTS = False cur_dir = os.path.dirname(os.path.abspath(__file__)) inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0., 0., 1., 1.]]), ([[[[1., 2.], [3., 4.]], [[4., 3.], [2., 1.]]]], [[0., 0., 0., 1., 1.]]), ([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.], [11., 12., 15., 16.]]]], [[0., 0., 0., 3., 3.]])] outputs = [([[[[1., 2.], [3., 4.]]]], [[[[1., 1.], [1., 1.]]]]), ([[[[1., 2.], [3., 4.]], [[4., 3.], [2., 1.]]]], [[[[1., 1.], [1., 1.]], [[1., 1.], [1., 1.]]]]), ([[[[4., 8.], [12., 16.]]]], [[[[0., 0., 0., 0.], [0., 1., 0., 1.], [0., 0., 0., 0.], [0., 1., 0., 1.]]]])] class TestRoiPool: def test_roipool_gradcheck(self): if not torch.cuda.is_available(): return from mmcv.ops import RoIPool pool_h = 2 pool_w = 2 spatial_scale = 1.0 for case in inputs: np_input = np.array(case[0]) np_rois = np.array(case[1]) x = torch.tensor(np_input, device='cuda', requires_grad=True) rois = torch.tensor(np_rois, device='cuda') froipool = RoIPool((pool_h, pool_w), spatial_scale) if _USING_PARROTS: pass # gradcheck(froipool, (x, rois), no_grads=[rois]) else: gradcheck(froipool, (x, rois), eps=1e-2, atol=1e-2) def _test_roipool_allclose(self, device, dtype=torch.float): from mmcv.ops import roi_pool pool_h = 2 pool_w = 2 spatial_scale = 1.0 for case, output in zip(inputs, outputs): np_input = np.array(case[0]) np_rois = np.array(case[1]) np_output = np.array(output[0]) np_grad = np.array(output[1]) x = torch.tensor( np_input, dtype=dtype, device=device, requires_grad=True) rois = torch.tensor(np_rois, dtype=dtype, device=device) output = roi_pool(x, rois, (pool_h, pool_w), spatial_scale) output.backward(torch.ones_like(output)) assert np.allclose(output.data.cpu().numpy(), np_output, 1e-3) assert np.allclose(x.grad.data.cpu().numpy(), np_grad, 1e-3) @pytest.mark.parametrize('device', [ pytest.param( 'cuda', marks=pytest.mark.skipif( not IS_CUDA_AVAILABLE, reason='requires CUDA support')), pytest.param( 'mlu', marks=pytest.mark.skipif( not IS_MLU_AVAILABLE, reason='requires MLU support')) ]) @pytest.mark.parametrize('dtype', [ torch.float, pytest.param( torch.double, marks=pytest.mark.skipif( IS_MLU_AVAILABLE, reason='MLU does not support for 64-bit floating point')), torch.half ]) def test_roipool_allclose(self, device, dtype): self._test_roipool_allclose(device, dtype)