# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from mmcv.ops import gather_points @pytest.mark.skipif( not torch.cuda.is_available(), reason='requires CUDA support') def test_gather_points(): features = torch.tensor([[[ -1.6095, -0.1029, -0.8876, -1.2447, -2.4031, 0.3708, -1.1586, -1.4967, -0.4800, 0.2252 ], [ 1.9138, 3.4979, 1.6854, 1.5631, 3.6776, 3.1154, 2.1705, 2.5221, 2.0411, 3.1446 ], [ -1.4173, 0.3073, -1.4339, -1.4340, -1.2770, -0.2867, -1.4162, -1.4044, -1.4245, -1.4074 ]], [[ 0.2160, 0.0842, 0.3661, -0.2749, -0.4909, -0.6066, -0.8773, -0.0745, -0.9496, 0.1434 ], [ 1.3644, 1.8087, 1.6855, 1.9563, 1.2746, 1.9662, 0.9566, 1.8778, 1.1437, 1.3639 ], [ -0.7172, 0.1692, 0.2241, 0.0721, -0.7540, 0.0462, -0.6227, 0.3223, -0.6944, -0.5294 ]]]).cuda() idx = torch.tensor([[0, 1, 4, 0, 0, 0], [0, 5, 6, 0, 0, 0]]).int().cuda() output = gather_points(features, idx) expected_output = torch.tensor( [[[-1.6095, -0.1029, -2.4031, -1.6095, -1.6095, -1.6095], [1.9138, 3.4979, 3.6776, 1.9138, 1.9138, 1.9138], [-1.4173, 0.3073, -1.2770, -1.4173, -1.4173, -1.4173]], [[0.2160, -0.6066, -0.8773, 0.2160, 0.2160, 0.2160], [1.3644, 1.9662, 0.9566, 1.3644, 1.3644, 1.3644], [-0.7172, 0.0462, -0.6227, -0.7172, -0.7172, -0.7172]]]).cuda() assert torch.allclose(output, expected_output) # test fp16 output_half = gather_points(features.half(), idx) assert torch.allclose(output_half, expected_output.half())