# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import pytest import torch from mmcv.ops import convex_giou, convex_iou np_pointsets = np.asarray([[ 1.0, 1.0, 2.0, 2.0, 1.0, 2.0, 2.0, 1.0, 1.0, 3.0, 3.0, 1.0, 2.0, 3.0, 3.0, 2.0, 1.5, 1.5 ], [ 1.5, 1.5, 2.5, 2.5, 1.5, 2.5, 2.5, 1.5, 1.5, 3.5, 3.5, 1.5, 2.5, 3.5, 3.5, 2.5, 2.0, 2.0 ]]) np_polygons = np.asarray([[1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 1.0], [1.0, 1.0, 1.0, 3.0, 3.0, 3.0, 3.0, 1.0]]) np_expected_iou = np.asarray([[0.2857, 0.8750], [0.0588, 0.4286]]) np_expected_giou = np.asarray([0.2857, 0.3831]) np_expected_grad = np.asarray([[ 0.0204, 0.0408, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0612, -0.0408, -0.0408, 0.0816, -0.0408, -0.0816, -0.0816, -0.0408, 0.0000, 0.0000 ], [ -0.1848, -0.1848, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, -0.1076, -0.0801, -0.0801, -0.1076, -0.0367, -0.0734, -0.0734, -0.0367, 0.0000, 0.0000 ]]) @pytest.mark.skipif( not torch.cuda.is_available(), reason='requires CUDA support') def test_convex_iou(): pointsets = torch.from_numpy(np_pointsets).cuda().float() polygons = torch.from_numpy(np_polygons).cuda().float() expected_iou = torch.from_numpy(np_expected_iou).cuda().float() assert torch.allclose( convex_iou(pointsets, polygons), expected_iou, atol=1e-3) @pytest.mark.skipif( not torch.cuda.is_available(), reason='requires CUDA support') def test_convex_giou(): pointsets = torch.from_numpy(np_pointsets).cuda().float() polygons = torch.from_numpy(np_polygons).cuda().float() expected_giou = torch.from_numpy(np_expected_giou).cuda().float() expected_grad = torch.from_numpy(np_expected_grad).cuda().float() giou, grad = convex_giou(pointsets, polygons) assert torch.allclose(giou, expected_giou, atol=1e-3) assert torch.allclose(grad, expected_grad, atol=1e-3)