# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import pytest import torch from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE, IS_MPS_AVAILABLE class TestBBox: def _test_bbox_overlaps(self, device='cpu', dtype=torch.float): from mmcv.ops import bbox_overlaps b1 = torch.tensor([[1.0, 1.0, 3.0, 4.0], [2.0, 2.0, 3.0, 4.0], [7.0, 7.0, 8.0, 8.0]]).to(device).type(dtype) b2 = torch.tensor([[0.0, 2.0, 2.0, 5.0], [2.0, 1.0, 3.0, 3.0]]).to(device).type(dtype) should_output = np.array([[0.33333334, 0.5], [0.2, 0.5], [0.0, 0.0]]) out = bbox_overlaps(b1, b2, offset=1) assert np.allclose(out.cpu().numpy(), should_output, 1e-2) b1 = torch.tensor([[1.0, 1.0, 3.0, 4.0], [2.0, 2.0, 3.0, 4.0]]).to(device).type(dtype) b2 = torch.tensor([[0.0, 2.0, 2.0, 5.0], [2.0, 1.0, 3.0, 3.0]]).to(device).type(dtype) should_output = np.array([0.33333334, 0.5]) out = bbox_overlaps(b1, b2, aligned=True, offset=1) assert np.allclose(out.cpu().numpy(), should_output, 1e-2) b1 = torch.tensor([[0.0, 0.0, 3.0, 3.0]]).to(device).type(dtype) b2 = torch.tensor([[4.0, 0.0, 5.0, 3.0], [3.0, 0.0, 4.0, 3.0], [2.0, 0.0, 3.0, 3.0], [1.0, 0.0, 2.0, 3.0]]).to(device).type(dtype) should_output = np.array([0, 0.2, 0.5, 0.5]) out = bbox_overlaps(b1, b2, offset=1) assert np.allclose(out.cpu().numpy(), should_output, 1e-2) @pytest.mark.parametrize('device', [ 'cpu', pytest.param( 'cuda', marks=pytest.mark.skipif( not IS_CUDA_AVAILABLE, reason='requires CUDA support')), pytest.param( 'mlu', marks=pytest.mark.skipif( not IS_MLU_AVAILABLE, reason='requires MLU support')), pytest.param( 'mps', marks=pytest.mark.skipif( not IS_MPS_AVAILABLE, reason='requires MPS support')) ]) def test_bbox_overlaps_float(self, device): self._test_bbox_overlaps(device, dtype=torch.float) @pytest.mark.parametrize('device', [ pytest.param( 'cuda', marks=pytest.mark.skipif( not IS_CUDA_AVAILABLE, reason='requires CUDA support')), pytest.param( 'mlu', marks=pytest.mark.skipif( not IS_MLU_AVAILABLE, reason='requires MLU support')) ]) def test_bbox_overlaps_half(self, device): self._test_bbox_overlaps(device, dtype=torch.half)