import torch import numpy as np import scipy from config.config import cfg from torch.nn import functional as F import torchgeometry as tgm def cam2pixel(cam_coord, f, c): x = cam_coord[:, 0] / cam_coord[:, 2] * f[0] + c[0] y = cam_coord[:, 1] / cam_coord[:, 2] * f[1] + c[1] z = cam_coord[:, 2] return np.stack((x, y, z), 1) def pixel2cam(pixel_coord, f, c): x = (pixel_coord[:, 0] - c[0]) / f[0] * pixel_coord[:, 2] y = (pixel_coord[:, 1] - c[1]) / f[1] * pixel_coord[:, 2] z = pixel_coord[:, 2] return np.stack((x, y, z), 1) def world2cam(world_coord, R, t): cam_coord = np.dot(R, world_coord.transpose(1, 0)).transpose( 1, 0) + t.reshape(1, 3) return cam_coord def cam2world(cam_coord, R, t): world_coord = np.dot(np.linalg.inv(R), (cam_coord - t.reshape(1, 3)).transpose(1, 0)).transpose( 1, 0) return world_coord def rigid_transform_3D(A, B): n, dim = A.shape centroid_A = np.mean(A, axis=0) centroid_B = np.mean(B, axis=0) H = np.dot(np.transpose(A - centroid_A), B - centroid_B) / n U, s, V = np.linalg.svd(H) R = np.dot(np.transpose(V), np.transpose(U)) if np.linalg.det(R) < 0: s[-1] = -s[-1] V[2] = -V[2] R = np.dot(np.transpose(V), np.transpose(U)) varP = np.var(A, axis=0).sum() c = 1 / varP * np.sum(s) t = -np.dot(c * R, np.transpose(centroid_A)) + np.transpose(centroid_B) return c, R, t def rigid_transform_3D_batch(A, B): n, dim = A.shape centroid_A = np.mean(A, axis=0) centroid_B = np.mean(B, axis=0) H = np.dot(np.transpose(A - centroid_A), B - centroid_B) / n U, s, V = np.linalg.svd(H) R = np.dot(np.transpose(V), np.transpose(U)) if np.linalg.det(R) < 0: s[-1] = -s[-1] V[2] = -V[2] R = np.dot(np.transpose(V), np.transpose(U)) varP = np.var(A, axis=0).sum() c = 1 / varP * np.sum(s) t = -np.dot(c * R, np.transpose(centroid_A)) + np.transpose(centroid_B) A2 = np.transpose(np.dot(c * R, np.transpose(A))) + t return A2 def rigid_align(A, B): c, R, t = rigid_transform_3D(A, B) A2 = np.transpose(np.dot(c * R, np.transpose(A))) + t return A2 def rigid_align_batch(A, B): A2 = np.stack([ rigid_transform_3D_batch(a_i, b_i) for a_i, b_i in zip(A, B) ]) return A2 def transform_joint_to_other_db(src_joint, src_name, dst_name): src_joint_num = len(src_name) dst_joint_num = len(dst_name) new_joint = np.zeros(((dst_joint_num, ) + src_joint.shape[1:]), dtype=np.float32) for src_idx in range(len(src_name)): name = src_name[src_idx] if name in dst_name: dst_idx = dst_name.index(name) new_joint[dst_idx] = src_joint[src_idx] return new_joint def transform_joint_to_other_db_batch(src_joint, src_name, dst_name): src_joint_num = len(src_name) dst_joint_num = len(dst_name) person_num = src_joint.shape[0] new_joint = np.zeros((( person_num, dst_joint_num, ) + src_joint.shape[2:]), dtype=np.float32) for src_idx in range(len(src_name)): name = src_name[src_idx] if name in dst_name: dst_idx = dst_name.index(name) new_joint[:, dst_idx] = src_joint[:, src_idx] return new_joint def rot6d_to_axis_angle(x): batch_size = x.shape[0] x = x.view(-1, 3, 2) a1 = x[:, :, 0] a2 = x[:, :, 1] b1 = F.normalize(a1) b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1) b3 = torch.cross(b1, b2) rot_mat = torch.stack((b1, b2, b3), dim=-1) # 3x3 rotation matrix rot_mat = torch.cat( [rot_mat, torch.zeros( (batch_size, 3, 1)).cuda().float()], 2) # 3x4 rotation matrix axis_angle = tgm.rotation_matrix_to_angle_axis(rot_mat).reshape( -1, 3) # axis-angle axis_angle[torch.isnan(axis_angle)] = 0.0 return axis_angle def sample_joint_features(img_feat, joint_xy): height, width = img_feat.shape[2:] x = joint_xy[:, :, 0] / (width - 1) * 2 - 1 y = joint_xy[:, :, 1] / (height - 1) * 2 - 1 grid = torch.stack((x, y), 2)[:, :, None, :] img_feat = F.grid_sample( img_feat, grid, align_corners=True)[:, :, :, 0] # batch_size, channel_dim, joint_num img_feat = img_feat.permute( 0, 2, 1).contiguous() # batch_size, joint_num, channel_dim return img_feat def soft_argmax_2d(heatmap2d): batch_size = heatmap2d.shape[0] height, width = heatmap2d.shape[2:] heatmap2d = heatmap2d.reshape((batch_size, -1, height * width)) heatmap2d = F.softmax(heatmap2d, 2) heatmap2d = heatmap2d.reshape((batch_size, -1, height, width)) accu_x = heatmap2d.sum(dim=(2)) accu_y = heatmap2d.sum(dim=(3)) accu_x = accu_x * torch.arange(width).float().cuda()[None, None, :] accu_y = accu_y * torch.arange(height).float().cuda()[None, None, :] accu_x = accu_x.sum(dim=2, keepdim=True) accu_y = accu_y.sum(dim=2, keepdim=True) coord_out = torch.cat((accu_x, accu_y), dim=2) return coord_out def soft_argmax_3d(heatmap3d): batch_size = heatmap3d.shape[0] depth, height, width = heatmap3d.shape[2:] heatmap3d = heatmap3d.reshape((batch_size, -1, depth * height * width)) heatmap3d = F.softmax(heatmap3d, 2) heatmap3d = heatmap3d.reshape((batch_size, -1, depth, height, width)) accu_x = heatmap3d.sum(dim=(2, 3)) accu_y = heatmap3d.sum(dim=(2, 4)) accu_z = heatmap3d.sum(dim=(3, 4)) accu_x = accu_x * torch.arange(width).float().cuda()[None, None, :] accu_y = accu_y * torch.arange(height).float().cuda()[None, None, :] accu_z = accu_z * torch.arange(depth).float().cuda()[None, None, :] accu_x = accu_x.sum(dim=2, keepdim=True) accu_y = accu_y.sum(dim=2, keepdim=True) accu_z = accu_z.sum(dim=2, keepdim=True) coord_out = torch.cat((accu_x, accu_y, accu_z), dim=2) return coord_out def restore_bbox(bbox_center, bbox_size, aspect_ratio, extension_ratio): bbox = bbox_center.view(-1, 1, 2) + torch.cat( (-bbox_size.view(-1, 1, 2) / 2., bbox_size.view(-1, 1, 2) / 2.), 1) # xyxy in (cfg.output_hm_shape[2], cfg.output_hm_shape[1]) space bbox[:, :, 0] = bbox[:, :, 0] / cfg.output_hm_shape[2] * cfg.input_body_shape[1] bbox[:, :, 1] = bbox[:, :, 1] / cfg.output_hm_shape[1] * cfg.input_body_shape[0] bbox = bbox.view(-1, 4) # xyxy -> xywh bbox[:, 2] = bbox[:, 2] - bbox[:, 0] bbox[:, 3] = bbox[:, 3] - bbox[:, 1] # aspect ratio preserving bbox w = bbox[:, 2] h = bbox[:, 3] c_x = bbox[:, 0] + w / 2. c_y = bbox[:, 1] + h / 2. mask1 = w > (aspect_ratio * h) mask2 = w < (aspect_ratio * h) h[mask1] = w[mask1] / aspect_ratio w[mask2] = h[mask2] * aspect_ratio bbox[:, 2] = w * extension_ratio bbox[:, 3] = h * extension_ratio bbox[:, 0] = c_x - bbox[:, 2] / 2. bbox[:, 1] = c_y - bbox[:, 3] / 2. # xywh -> xyxy bbox[:, 2] = bbox[:, 2] + bbox[:, 0] bbox[:, 3] = bbox[:, 3] + bbox[:, 1] return bbox