# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import pytest import torch from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE _USING_PARROTS = True try: from parrots.autograd import gradcheck except ImportError: from torch.autograd import gradcheck _USING_PARROTS = False # yapf:disable inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0., 0., 1., 1.]]), ([[[[1., 2.], [3., 4.]], [[4., 3.], [2., 1.]]]], [[0., 0., 0., 1., 1.]]), ([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.], [11., 12., 15., 16.]]]], [[0., 0., 0., 3., 3.]])] outputs = [([[[[1.0, 1.25], [1.5, 1.75]]]], [[[[3.0625, 0.4375], [0.4375, 0.0625]]]]), ([[[[1.0, 1.25], [1.5, 1.75]], [[4.0, 3.75], [3.5, 3.25]]]], [[[[3.0625, 0.4375], [0.4375, 0.0625]], [[3.0625, 0.4375], [0.4375, 0.0625]]]]), ([[[[1.9375, 4.75], [7.5625, 10.375]]]], [[[[0.47265625, 0.42968750, 0.42968750, 0.04296875], [0.42968750, 0.39062500, 0.39062500, 0.03906250], [0.42968750, 0.39062500, 0.39062500, 0.03906250], [0.04296875, 0.03906250, 0.03906250, 0.00390625]]]])] # yapf:enable pool_h = 2 pool_w = 2 spatial_scale = 1.0 sampling_ratio = 2 def _test_roialign_gradcheck(device, dtype): try: from mmcv.ops import RoIAlign except ModuleNotFoundError: pytest.skip('RoIAlign op is not successfully compiled') if dtype is torch.half: pytest.skip('grad check does not support fp16') for case in inputs: np_input = np.array(case[0]) np_rois = np.array(case[1]) x = torch.tensor( np_input, dtype=dtype, device=device, requires_grad=True) rois = torch.tensor(np_rois, dtype=dtype, device=device) froipool = RoIAlign((pool_h, pool_w), spatial_scale, sampling_ratio) if torch.__version__ == 'parrots': gradcheck( froipool, (x, rois), no_grads=[rois], delta=1e-5, pt_atol=1e-5) else: gradcheck(froipool, (x, rois), eps=1e-5, atol=1e-5) def _test_roialign_allclose(device, dtype): try: from mmcv.ops import roi_align except ModuleNotFoundError: pytest.skip('test requires compilation') pool_h = 2 pool_w = 2 spatial_scale = 1.0 sampling_ratio = 2 for case, output in zip(inputs, outputs): np_input = np.array(case[0]) np_rois = np.array(case[1]) np_output = np.array(output[0]) np_grad = np.array(output[1]) x = torch.tensor( np_input, dtype=dtype, device=device, requires_grad=True) rois = torch.tensor(np_rois, dtype=dtype, device=device) output = roi_align(x, rois, (pool_h, pool_w), spatial_scale, sampling_ratio, 'avg', True) output.backward(torch.ones_like(output)) assert np.allclose( output.data.type(torch.float).cpu().numpy(), np_output, atol=1e-3) assert np.allclose( x.grad.data.type(torch.float).cpu().numpy(), np_grad, atol=1e-3) @pytest.mark.parametrize('device', [ 'cpu', pytest.param( 'cuda', marks=pytest.mark.skipif( not IS_CUDA_AVAILABLE, reason='requires CUDA support')), pytest.param( 'mlu', marks=pytest.mark.skipif( not IS_MLU_AVAILABLE, reason='requires MLU support')) ]) @pytest.mark.parametrize('dtype', [ torch.float, pytest.param( torch.double, marks=pytest.mark.skipif( IS_MLU_AVAILABLE, reason='MLU does not support for 64-bit floating point')), torch.half ]) def test_roialign(device, dtype): # check double only if dtype is torch.double: _test_roialign_gradcheck(device=device, dtype=dtype) _test_roialign_allclose(device=device, dtype=dtype)