# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import torch def test_contour_expand(): from mmcv.ops import contour_expand np_internal_kernel_label = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 0, 2, 0], [0, 0, 1, 1, 0, 0, 0, 0, 2, 0], [0, 0, 1, 1, 0, 0, 0, 0, 2, 0], [0, 0, 1, 1, 0, 0, 0, 0, 2, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]).astype(np.int32) np_kernel_mask1 = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]).astype(np.uint8) np_kernel_mask2 = (np_internal_kernel_label > 0).astype(np.uint8) np_kernel_mask = np.stack([np_kernel_mask1, np_kernel_mask2]) min_area = 1 kernel_region_num = 3 result = contour_expand(np_kernel_mask, np_internal_kernel_label, min_area, kernel_region_num) gt = [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 1, 1, 2, 2, 2, 0], [0, 0, 1, 1, 1, 1, 2, 2, 2, 0], [0, 0, 1, 1, 1, 1, 2, 2, 2, 0], [0, 0, 1, 1, 1, 1, 2, 2, 2, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]] assert np.allclose(result, gt) np_kernel_mask_t = torch.from_numpy(np_kernel_mask) np_internal_kernel_label_t = torch.from_numpy(np_internal_kernel_label) result = contour_expand(np_kernel_mask_t, np_internal_kernel_label_t, min_area, kernel_region_num) assert np.allclose(result, gt)