# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from mmcv.ops import chamfer_distance @pytest.mark.skipif( not torch.cuda.is_available(), reason='requires CUDA support') def test_chamfer_distance(): pointset1 = torch.tensor( [[[1.3, 9.39], [2.3, 9.39], [2.3, 10.39], [1.3, 10.39]], [[1.0, 9.39], [3.0, 9.39], [3.0, 10.39], [1.0, 10.39]], [[1.6, 9.99], [2.3, 9.99], [2.3, 10.39], [1.6, 10.39]]], device='cuda', requires_grad=True) pointset2 = torch.tensor( [[[1.0, 9.39], [3.0, 9.39], [3.0, 10.39], [1.0, 10.39]], [[1.3, 9.39], [2.3, 9.39], [2.3, 10.39], [1.3, 10.39]], [[1.0, 9.39], [3.0, 9.39], [3.0, 10.39], [1.0, 10.39]]], device='cuda', requires_grad=True) expected_dist1 = torch.tensor( [[0.0900, 0.4900, 0.4900, 0.0900], [0.0900, 0.4900, 0.4900, 0.0900], [0.5200, 0.6500, 0.4900, 0.3600]], device='cuda') expected_dist2 = torch.tensor( [[0.0900, 0.4900, 0.4900, 0.0900], [0.0900, 0.4900, 0.4900, 0.0900], [0.7200, 0.8500, 0.4900, 0.3600]], device='cuda') expected_pointset1_grad = torch.tensor( [[[0.6000, 0.0000], [-1.4000, 0.0000], [-1.4000, 0.0000], [0.6000, 0.0000]], [[-0.6000, 0.0000], [1.4000, 0.0000], [1.4000, 0.0000], [-0.6000, 0.0000]], [[1.2000, -0.8000], [-1.4000, -0.8000], [-1.4000, 0.0000], [1.2000, 0.0000]]], device='cuda') expected_pointset2_grad = torch.tensor( [[[-0.6000, 0.0000], [1.4000, 0.0000], [1.4000, 0.0000], [-0.6000, 0.0000]], [[0.6000, 0.0000], [-1.4000, 0.0000], [-1.4000, 0.0000], [0.6000, 0.0000]], [[0.0000, 0.0000], [0.0000, 0.0000], [2.8000, 0.8000], [-2.4000, 0.8000]]], device='cuda') dist1, dist2, idx1, idx2 = chamfer_distance(pointset1, pointset2) dist1.backward(torch.ones_like(dist1)) assert torch.allclose(dist1, expected_dist1, 1e-2) assert torch.allclose(dist2, expected_dist2, 1e-2) assert torch.allclose(pointset1.grad.data, expected_pointset1_grad, 1e-2) assert torch.allclose(pointset2.grad.data, expected_pointset2_grad, 1e-2)