# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import cv2 import numpy as np import pytest from numpy.testing import assert_array_equal import mmcv class TestGeometric: @classmethod def setup_class(cls): cls.data_dir = osp.join(osp.dirname(__file__), '../data') # the test img resolution is 400x300 cls.img_path = osp.join(cls.data_dir, 'color.jpg') cls.img = cv2.imread(cls.img_path) def test_imresize(self): resized_img = mmcv.imresize(self.img, (1000, 600)) assert resized_img.shape == (600, 1000, 3) resized_img, w_scale, h_scale = mmcv.imresize(self.img, (1000, 600), True) assert (resized_img.shape == (600, 1000, 3) and w_scale == 2.5 and h_scale == 2.0) resized_img_dst = np.empty((600, 1000, 3), dtype=self.img.dtype) resized_img = mmcv.imresize(self.img, (1000, 600), out=resized_img_dst) assert id(resized_img_dst) == id(resized_img) assert_array_equal(resized_img_dst, mmcv.imresize(self.img, (1000, 600))) for mode in ['nearest', 'bilinear', 'bicubic', 'area', 'lanczos']: resized_img = mmcv.imresize( self.img, (1000, 600), interpolation=mode) assert resized_img.shape == (600, 1000, 3) # test pillow resize for mode in [ 'nearest', 'bilinear', 'bicubic', 'box', 'lanczos', 'hamming' ]: resized_img = mmcv.imresize( self.img, (1000, 600), interpolation=mode, backend='pillow') assert resized_img.shape == (600, 1000, 3) # resize backend must be 'cv2' or 'pillow' with pytest.raises(ValueError): mmcv.imresize(self.img, (1000, 600), backend='not support') def test_imresize_to_multiple(self): # test size and keep_ratio = False resized_img = mmcv.imresize_to_multiple( self.img, divisor=16, size=(511, 513), keep_ratio=False) assert resized_img.shape == (528, 512, 3) resized_img = mmcv.imresize_to_multiple( self.img, divisor=(16, 32), size=(511, 513), keep_ratio=False) assert resized_img.shape == (544, 512, 3) # test size, keep_ratio = True, and return_scale resized_img, w_scale, h_scale = mmcv.imresize_to_multiple( self.img, divisor=16, size=(1000, 600), keep_ratio=True, return_scale=True) assert resized_img.shape == ( 608, 800, 3) and h_scale == 608 / 300 and w_scale == 800 / 400 resized_img, w_scale, h_scale = mmcv.imresize_to_multiple( self.img, divisor=(18, 16), size=(1000, 600), keep_ratio=True, return_scale=True) assert resized_img.shape == ( 608, 810, 3) and h_scale == 608 / 300 and w_scale == 810 / 400 # test scale_factor and return_scale resized_img, w_scale, h_scale = mmcv.imresize_to_multiple( self.img, divisor=16, scale_factor=2, return_scale=True) assert resized_img.shape == ( 608, 800, 3) and h_scale == 608 / 300 and w_scale == 800 / 400 resized_img, w_scale, h_scale = mmcv.imresize_to_multiple( self.img, divisor=16, scale_factor=(2, 3), return_scale=True) assert resized_img.shape == ( 912, 800, 3) and h_scale == 912 / 300 and w_scale == 800 / 400 resized_img, w_scale, h_scale = mmcv.imresize_to_multiple( self.img, divisor=(18, 16), scale_factor=(2, 3), return_scale=True) assert resized_img.shape == ( 912, 810, 3) and h_scale == 912 / 300 and w_scale == 810 / 400 # one of size and scale_factor should be given with pytest.raises(ValueError): mmcv.imresize_to_multiple( self.img, divisor=16, size=(1000, 600), scale_factor=2) with pytest.raises(ValueError): mmcv.imresize_to_multiple( self.img, divisor=16, size=None, scale_factor=None) def test_imresize_like(self): a = np.zeros((100, 200, 3)) resized_img = mmcv.imresize_like(self.img, a) assert resized_img.shape == (100, 200, 3) def test_rescale_size(self): new_size, scale_factor = mmcv.rescale_size((400, 300), 1.5, True) assert new_size == (600, 450) and scale_factor == 1.5 new_size, scale_factor = mmcv.rescale_size((400, 300), 0.934, True) assert new_size == (374, 280) and scale_factor == 0.934 new_size = mmcv.rescale_size((400, 300), 1.5) assert new_size == (600, 450) new_size = mmcv.rescale_size((400, 300), 0.934) assert new_size == (374, 280) new_size, scale_factor = mmcv.rescale_size((400, 300), (1000, 600), True) assert new_size == (800, 600) and scale_factor == 2.0 new_size, scale_factor = mmcv.rescale_size((400, 300), (180, 200), True) assert new_size == (200, 150) and scale_factor == 0.5 new_size = mmcv.rescale_size((400, 300), (1000, 600)) assert new_size == (800, 600) new_size = mmcv.rescale_size((400, 300), (180, 200)) assert new_size == (200, 150) with pytest.raises(ValueError): mmcv.rescale_size((400, 300), -0.5) with pytest.raises(TypeError): mmcv.rescale_size()((400, 300), [100, 100]) def test_imrescale(self): # rescale by a certain factor resized_img = mmcv.imrescale(self.img, 1.5) assert resized_img.shape == (450, 600, 3) resized_img = mmcv.imrescale(self.img, 0.934) assert resized_img.shape == (280, 374, 3) # rescale by a certain max_size # resize (400, 300) to (max_1000, max_600) resized_img = mmcv.imrescale(self.img, (1000, 600)) assert resized_img.shape == (600, 800, 3) resized_img, scale = mmcv.imrescale( self.img, (1000, 600), return_scale=True) assert resized_img.shape == (600, 800, 3) and scale == 2.0 # resize (400, 300) to (max_200, max_180) resized_img = mmcv.imrescale(self.img, (180, 200)) assert resized_img.shape == (150, 200, 3) resized_img, scale = mmcv.imrescale( self.img, (180, 200), return_scale=True) assert resized_img.shape == (150, 200, 3) and scale == 0.5 # test exceptions with pytest.raises(ValueError): mmcv.imrescale(self.img, -0.5) with pytest.raises(TypeError): mmcv.imrescale(self.img, [100, 100]) def test_imflip(self): # direction must be "horizontal" or "vertical" or "diagonal" with pytest.raises(AssertionError): mmcv.imflip(np.random.rand(80, 60, 3), direction='random') # test horizontal flip (color image) img = np.random.rand(80, 60, 3) h, w, c = img.shape flipped_img = mmcv.imflip(img) assert flipped_img.shape == img.shape for i in range(h): for j in range(w): for k in range(c): assert flipped_img[i, j, k] == img[i, w - 1 - j, k] # test vertical flip (color image) flipped_img = mmcv.imflip(img, direction='vertical') assert flipped_img.shape == img.shape for i in range(h): for j in range(w): for k in range(c): assert flipped_img[i, j, k] == img[h - 1 - i, j, k] # test diagonal flip (color image) flipped_img = mmcv.imflip(img, direction='diagonal') assert flipped_img.shape == img.shape for i in range(h): for j in range(w): for k in range(c): assert flipped_img[i, j, k] == img[h - 1 - i, w - 1 - j, k] # test horizontal flip (grayscale image) img = np.random.rand(80, 60) h, w = img.shape flipped_img = mmcv.imflip(img) assert flipped_img.shape == img.shape for i in range(h): for j in range(w): assert flipped_img[i, j] == img[i, w - 1 - j] # test vertical flip (grayscale image) flipped_img = mmcv.imflip(img, direction='vertical') assert flipped_img.shape == img.shape for i in range(h): for j in range(w): assert flipped_img[i, j] == img[h - 1 - i, j] # test diagonal flip (grayscale image) flipped_img = mmcv.imflip(img, direction='diagonal') assert flipped_img.shape == img.shape for i in range(h): for j in range(w): assert flipped_img[i, j] == img[h - 1 - i, w - 1 - j] def test_imflip_(self): # direction must be "horizontal" or "vertical" or "diagonal" with pytest.raises(AssertionError): mmcv.imflip_(np.random.rand(80, 60, 3), direction='random') # test horizontal flip (color image) img = np.random.rand(80, 60, 3) h, w, c = img.shape img_for_flip = img.copy() flipped_img = mmcv.imflip_(img_for_flip) assert flipped_img.shape == img.shape assert flipped_img.shape == img_for_flip.shape assert id(flipped_img) == id(img_for_flip) for i in range(h): for j in range(w): for k in range(c): assert flipped_img[i, j, k] == img[i, w - 1 - j, k] assert flipped_img[i, j, k] == img_for_flip[i, j, k] # test vertical flip (color image) img_for_flip = img.copy() flipped_img = mmcv.imflip_(img_for_flip, direction='vertical') assert flipped_img.shape == img.shape assert flipped_img.shape == img_for_flip.shape assert id(flipped_img) == id(img_for_flip) for i in range(h): for j in range(w): for k in range(c): assert flipped_img[i, j, k] == img[h - 1 - i, j, k] assert flipped_img[i, j, k] == img_for_flip[i, j, k] # test diagonal flip (color image) img_for_flip = img.copy() flipped_img = mmcv.imflip_(img_for_flip, direction='diagonal') assert flipped_img.shape == img.shape assert flipped_img.shape == img_for_flip.shape assert id(flipped_img) == id(img_for_flip) for i in range(h): for j in range(w): for k in range(c): assert flipped_img[i, j, k] == img[h - 1 - i, w - 1 - j, k] assert flipped_img[i, j, k] == img_for_flip[i, j, k] # test horizontal flip (grayscale image) img = np.random.rand(80, 60) h, w = img.shape img_for_flip = img.copy() flipped_img = mmcv.imflip_(img_for_flip) assert flipped_img.shape == img.shape assert flipped_img.shape == img_for_flip.shape assert id(flipped_img) == id(img_for_flip) for i in range(h): for j in range(w): assert flipped_img[i, j] == img[i, w - 1 - j] assert flipped_img[i, j] == img_for_flip[i, j] # test vertical flip (grayscale image) img_for_flip = img.copy() flipped_img = mmcv.imflip_(img_for_flip, direction='vertical') assert flipped_img.shape == img.shape assert flipped_img.shape == img_for_flip.shape assert id(flipped_img) == id(img_for_flip) for i in range(h): for j in range(w): assert flipped_img[i, j] == img[h - 1 - i, j] assert flipped_img[i, j] == img_for_flip[i, j] # test diagonal flip (grayscale image) img_for_flip = img.copy() flipped_img = mmcv.imflip_(img_for_flip, direction='diagonal') assert flipped_img.shape == img.shape assert flipped_img.shape == img_for_flip.shape assert id(flipped_img) == id(img_for_flip) for i in range(h): for j in range(w): assert flipped_img[i, j] == img[h - 1 - i, w - 1 - j] assert flipped_img[i, j] == img_for_flip[i, j] def test_imcrop(self): # yapf: disable bboxes = np.array([[100, 100, 199, 199], # center [0, 0, 150, 100], # left-top corner [250, 200, 399, 299], # right-bottom corner [0, 100, 399, 199], # wide [150, 0, 299, 299]]) # tall # yapf: enable # crop one bbox patch = mmcv.imcrop(self.img, bboxes[0, :]) patches = mmcv.imcrop(self.img, bboxes[[0], :]) assert patch.shape == (100, 100, 3) patch_path = osp.join(self.data_dir, 'patches') ref_patch = np.load(patch_path + '/0.npy') assert_array_equal(patch, ref_patch) assert isinstance(patches, list) and len(patches) == 1 assert_array_equal(patches[0], ref_patch) # crop with no scaling and padding patches = mmcv.imcrop(self.img, bboxes) assert len(patches) == bboxes.shape[0] for i in range(len(patches)): ref_patch = np.load(patch_path + f'/{i}.npy') assert_array_equal(patches[i], ref_patch) # crop with scaling and no padding patches = mmcv.imcrop(self.img, bboxes, 1.2) for i in range(len(patches)): ref_patch = np.load(patch_path + f'/scale_{i}.npy') assert_array_equal(patches[i], ref_patch) # crop with scaling and padding patches = mmcv.imcrop(self.img, bboxes, 1.2, pad_fill=[255, 255, 0]) for i in range(len(patches)): ref_patch = np.load(patch_path + f'/pad_{i}.npy') assert_array_equal(patches[i], ref_patch) patches = mmcv.imcrop(self.img, bboxes, 1.2, pad_fill=0) for i in range(len(patches)): ref_patch = np.load(patch_path + f'/pad0_{i}.npy') assert_array_equal(patches[i], ref_patch) def test_impad(self): # grayscale image img = np.random.rand(10, 10).astype(np.float32) padded_img = mmcv.impad(img, padding=(0, 0, 2, 5), pad_val=0) assert_array_equal(img, padded_img[:10, :10]) assert_array_equal( np.zeros((5, 12), dtype='float32'), padded_img[10:, :]) assert_array_equal( np.zeros((15, 2), dtype='float32'), padded_img[:, 10:]) # RGB image img = np.random.rand(10, 10, 3).astype(np.float32) padded_img = mmcv.impad(img, padding=(0, 0, 2, 5), pad_val=0) assert_array_equal(img, padded_img[:10, :10, :]) assert_array_equal( np.zeros((5, 12, 3), dtype='float32'), padded_img[10:, :, :]) assert_array_equal( np.zeros((15, 2, 3), dtype='float32'), padded_img[:, 10:, :]) # RGB image with different values for three channels. img = np.random.randint(256, size=(10, 10, 3)).astype('uint8') padded_img = mmcv.impad( img, padding=(0, 0, 2, 5), pad_val=(100, 110, 120)) assert_array_equal(img, padded_img[:10, :10, :]) assert_array_equal( np.array([100, 110, 120], dtype='uint8') * np.ones( (5, 12, 3), dtype='uint8'), padded_img[10:, :, :]) assert_array_equal( np.array([100, 110, 120], dtype='uint8') * np.ones( (15, 2, 3), dtype='uint8'), padded_img[:, 10:, :]) # Pad the grayscale image to shape (15, 12) img = np.random.rand(10, 10).astype(np.float32) padded_img = mmcv.impad(img, shape=(15, 12)) assert_array_equal(img, padded_img[:10, :10]) assert_array_equal( np.zeros((5, 12), dtype='float32'), padded_img[10:, :]) assert_array_equal( np.zeros((15, 2), dtype='float32'), padded_img[:, 10:]) # Pad the RGB image to shape (15, 12) img = np.random.rand(10, 10, 3).astype(np.float32) padded_img = mmcv.impad(img, shape=(15, 12)) assert_array_equal(img, padded_img[:10, :10, :]) assert_array_equal( np.zeros((5, 12, 3), dtype='float32'), padded_img[10:, :, :]) assert_array_equal( np.zeros((15, 2, 3), dtype='float32'), padded_img[:, 10:, :]) # Pad the RGB image to shape (15, 12) with different values for # three channels. img = np.random.randint(256, size=(10, 10, 3)).astype('uint8') padded_img = mmcv.impad(img, shape=(15, 12), pad_val=(100, 110, 120)) assert_array_equal(img, padded_img[:10, :10, :]) assert_array_equal( np.array([100, 110, 120], dtype='uint8') * np.ones( (5, 12, 3), dtype='uint8'), padded_img[10:, :, :]) assert_array_equal( np.array([100, 110, 120], dtype='uint8') * np.ones( (15, 2, 3), dtype='uint8'), padded_img[:, 10:, :]) # RGB image with padding=[5, 2] img = np.random.rand(10, 10, 3).astype(np.float32) padded_img = mmcv.impad(img, padding=(5, 2), pad_val=0) assert padded_img.shape == (14, 20, 3) assert_array_equal(img, padded_img[2:12, 5:15, :]) assert_array_equal( np.zeros((2, 5, 3), dtype='float32'), padded_img[:2, :5, :]) assert_array_equal( np.zeros((2, 5, 3), dtype='float32'), padded_img[12:, :5, :]) assert_array_equal( np.zeros((2, 5, 3), dtype='float32'), padded_img[:2, 15:, :]) assert_array_equal( np.zeros((2, 5, 3), dtype='float32'), padded_img[12:, 15:, :]) # RGB image with type(pad_val) = tuple pad_val = (0, 1, 2) img = np.random.rand(10, 10, 3).astype(np.float32) padded_img = mmcv.impad(img, padding=(0, 0, 5, 2), pad_val=pad_val) assert padded_img.shape == (12, 15, 3) assert_array_equal(img, padded_img[:10, :10, :]) assert_array_equal(pad_val[0] * np.ones((2, 15, 1), dtype='float32'), padded_img[10:, :, 0:1]) assert_array_equal(pad_val[1] * np.ones((2, 15, 1), dtype='float32'), padded_img[10:, :, 1:2]) assert_array_equal(pad_val[2] * np.ones((2, 15, 1), dtype='float32'), padded_img[10:, :, 2:3]) assert_array_equal(pad_val[0] * np.ones((12, 5, 1), dtype='float32'), padded_img[:, 10:, 0:1]) assert_array_equal(pad_val[1] * np.ones((12, 5, 1), dtype='float32'), padded_img[:, 10:, 1:2]) assert_array_equal(pad_val[2] * np.ones((12, 5, 1), dtype='float32'), padded_img[:, 10:, 2:3]) # test different padding mode with channel number = 3 for mode in ['constant', 'edge', 'reflect', 'symmetric']: img = np.random.rand(10, 10, 3).astype(np.float32) padded_img = mmcv.impad( img, padding=(0, 0, 5, 2), pad_val=pad_val, padding_mode=mode) assert padded_img.shape == (12, 15, 3) # test different padding mode with channel number = 1 for mode in ['constant', 'edge', 'reflect', 'symmetric']: img = np.random.rand(10, 10).astype(np.float32) padded_img = mmcv.impad( img, padding=(0, 0, 5, 2), pad_val=0, padding_mode=mode) assert padded_img.shape == (12, 15) # Padding must be a int or a 2, or 4 element tuple. with pytest.raises(ValueError): mmcv.impad(img, padding=(1, 1, 1)) # pad_val must be a int or a tuple with pytest.raises(TypeError): mmcv.impad(img, padding=(1, 1, 1, 1), pad_val='wrong') # When pad_val is a tuple, # len(pad_val) should be equal to img.shape[-1] img = np.random.rand(10, 10, 3).astype(np.float32) with pytest.raises(AssertionError): mmcv.impad(img, padding=3, pad_val=(100, 200)) with pytest.raises(AssertionError): mmcv.impad(img, padding=2, pad_val=0, padding_mode='unknown') with pytest.raises(AssertionError): mmcv.impad(img, shape=(12, 15), padding=(0, 0, 5, 2)) # Pad shape smaller than image shape padded_img = mmcv.impad(img, shape=(8, 8)) assert padded_img.shape == (10, 10, 3) def test_impad_to_multiple(self): img = np.random.rand(11, 14, 3).astype(np.float32) padded_img = mmcv.impad_to_multiple(img, 4) assert padded_img.shape == (12, 16, 3) img = np.random.rand(20, 12).astype(np.float32) padded_img = mmcv.impad_to_multiple(img, 5) assert padded_img.shape == (20, 15) img = np.random.rand(20, 12).astype(np.float32) padded_img = mmcv.impad_to_multiple(img, 2) assert padded_img.shape == (20, 12) def test_cutout(self): img = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]).astype(np.uint8) # shape must be int or tuple with pytest.raises(AssertionError): mmcv.cutout(img, 2.5) # pad_val must be int or float or tuple with the same length # of img channels with pytest.raises(AssertionError): mmcv.cutout(img, 1, (1, 2, 3)) with pytest.raises(TypeError): mmcv.cutout(img, 1, None) # test cutout the whole img assert_array_equal(mmcv.cutout(img, 6), np.zeros_like(img)) # test not cutout assert_array_equal(mmcv.cutout(img, 0), img) # test cutout when shape is int np.random.seed(0) img_cutout = np.array([[1, 2, 3], [4, 0, 6], [7, 8, 9]]).astype(np.uint8) assert_array_equal(mmcv.cutout(img, 1), img_cutout) img_cutout = np.array([[1, 2, 3], [4, 10, 6], [7, 8, 9]]).astype(np.uint8) assert_array_equal(mmcv.cutout(img, 1, pad_val=10), img_cutout) # test cutout when shape is tuple np.random.seed(0) img_cutout = np.array([[1, 2, 3], [0, 0, 6], [7, 8, 9]]).astype(np.uint8) assert_array_equal(mmcv.cutout(img, (1, 2)), img_cutout) img_cutout = np.array([[1, 2, 3], [10, 10, 6], [7, 8, 9]]).astype(np.uint8) assert_array_equal(mmcv.cutout(img, (1, 2), pad_val=10), img_cutout) def test_imrotate(self): img = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]).astype(np.uint8) assert_array_equal(mmcv.imrotate(img, 0), img) img_r = np.array([[7, 4, 1], [8, 5, 2], [9, 6, 3]]) assert_array_equal(mmcv.imrotate(img, 90), img_r) img_r = np.array([[3, 6, 9], [2, 5, 8], [1, 4, 7]]) assert_array_equal(mmcv.imrotate(img, -90), img_r) img = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]).astype(np.uint8) img_r = np.array([[0, 6, 2, 0], [0, 7, 3, 0]]) assert_array_equal(mmcv.imrotate(img, 90), img_r) img_r = np.array([[1, 0, 0, 0], [2, 0, 0, 0]]) assert_array_equal(mmcv.imrotate(img, 90, center=(0, 0)), img_r) img_r = np.array([[255, 6, 2, 255], [255, 7, 3, 255]]) assert_array_equal(mmcv.imrotate(img, 90, border_value=255), img_r) img_r = np.array([[5, 1], [6, 2], [7, 3], [8, 4]]) assert_array_equal(mmcv.imrotate(img, 90, auto_bound=True), img_r) with pytest.raises(ValueError): mmcv.imrotate(img, 90, center=(0, 0), auto_bound=True) def test_imshear(self): img = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]).astype(np.uint8) assert_array_equal(mmcv.imshear(img, 0), img) # magnitude=1, horizontal img_sheared = np.array([[1, 2, 3], [0, 4, 5], [0, 0, 7]], dtype=np.uint8) assert_array_equal(mmcv.imshear(img, 1), img_sheared) # magnitude=-1, vertical img_sheared = np.array([[1, 5, 9], [4, 8, 0], [7, 0, 0]], dtype=np.uint8) assert_array_equal(mmcv.imshear(img, -1, 'vertical'), img_sheared) # magnitude=1, vertical, borderValue=100 borderValue = 100 img_sheared = np.array( [[1, borderValue, borderValue], [4, 2, borderValue], [7, 5, 3]], dtype=np.uint8) assert_array_equal( mmcv.imshear(img, 1, 'vertical', borderValue), img_sheared) # magnitude=1, vertical, borderValue=100, img shape (h,w,3) img = np.stack([img, img, img], axis=-1) img_sheared = np.stack([img_sheared, img_sheared, img_sheared], axis=-1) assert_array_equal( mmcv.imshear(img, 1, 'vertical', borderValue), img_sheared) # test tuple format of borderValue assert_array_equal( mmcv.imshear(img, 1, 'vertical', (borderValue, borderValue, borderValue)), img_sheared) # test invalid length of borderValue with pytest.raises(AssertionError): mmcv.imshear(img, 0.5, 'horizontal', (borderValue, )) # test invalid type of borderValue with pytest.raises(ValueError): mmcv.imshear(img, 0.5, 'horizontal', [borderValue]) # test invalid value of direction with pytest.raises(AssertionError): mmcv.imshear(img, 0.5, 'diagonal') def test_imtranslate(self): img = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.uint8) assert_array_equal(mmcv.imtranslate(img, 0), img) # offset=1, horizontal img_translated = np.array([[128, 1, 2], [128, 4, 5], [128, 7, 8]], dtype=np.uint8) assert_array_equal( mmcv.imtranslate(img, 1, border_value=128), img_translated) # offset=-1, vertical img_translated = np.array([[4, 5, 6], [7, 8, 9], [0, 0, 0]], dtype=np.uint8) assert_array_equal( mmcv.imtranslate(img, -1, 'vertical'), img_translated) # offset=-2, horizontal img = np.array([[1, 2, 3, 4], [5, 6, 7, 8]], dtype=np.uint8) img = np.stack([img, img, img], axis=-1) img_translated = [[3, 4, 128, 128], [7, 8, 128, 128]] img_translated = np.stack( [img_translated, img_translated, img_translated], axis=-1) assert_array_equal( mmcv.imtranslate(img, -2, border_value=128), img_translated) # offset=2, vertical border_value = (110, 120, 130) img_translated = np.stack([ np.ones((2, 4)) * border_value[0], np.ones((2, 4)) * border_value[1], np.ones((2, 4)) * border_value[2] ], axis=-1).astype(np.uint8) assert_array_equal( mmcv.imtranslate(img, 2, 'vertical', border_value), img_translated) # test invalid number elements in border_value with pytest.raises(AssertionError): mmcv.imtranslate(img, 1, border_value=(1, )) # test invalid type of border_value with pytest.raises(ValueError): mmcv.imtranslate(img, 1, border_value=[1, 2, 3]) # test invalid value of direction with pytest.raises(AssertionError): mmcv.imtranslate(img, 1, 'diagonal')