import mmcv import os import os.path as osp import pickle import shutil import tempfile import time import torch import torch.distributed as dist from mmcv.runner import get_dist_info import random import numpy as np import subprocess def set_seed(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # torch.set_deterministic(True) def time_synchronized(): torch.cuda.synchronize() if torch.cuda.is_available() else None return time.time() def setup_for_distributed(is_master): """This function disables printing when not in master process.""" import builtins as __builtin__ builtin_print = __builtin__.print def print(*args, **kwargs): force = kwargs.pop('force', False) if is_master or force: builtin_print(*args, **kwargs) __builtin__.print = print def init_distributed_mode(port=None, master_port=29500): """Initialize slurm distributed training environment. If argument ``port`` is not specified, then the master port will be system environment variable ``MASTER_PORT``. If ``MASTER_PORT`` is not in system environment variable, then a default port ``29500`` will be used. Args: backend (str): Backend of torch.distributed. port (int, optional): Master port. Defaults to None. """ dist_backend = 'nccl' proc_id = int(os.environ['SLURM_PROCID']) ntasks = int(os.environ['SLURM_NTASKS']) node_list = os.environ['SLURM_NODELIST'] num_gpus = torch.cuda.device_count() torch.cuda.set_device(proc_id % num_gpus) addr = subprocess.getoutput( f'scontrol show hostname {node_list} | head -n1') # specify master port if port is not None: os.environ['MASTER_PORT'] = str(port) elif 'MASTER_PORT' in os.environ: pass # use MASTER_PORT in the environment variable else: # 29500 is torch.distributed default port os.environ['MASTER_PORT'] = str(master_port) # use MASTER_ADDR in the environment variable if it already exists if 'MASTER_ADDR' not in os.environ: os.environ['MASTER_ADDR'] = addr os.environ['WORLD_SIZE'] = str(ntasks) os.environ['LOCAL_RANK'] = str(proc_id % num_gpus) os.environ['RANK'] = str(proc_id) dist.init_process_group(backend=dist_backend) distributed = True gpu_idx = proc_id % num_gpus return distributed, gpu_idx def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True def get_world_size(): if not is_dist_avail_and_initialized(): return 1 return dist.get_world_size() def get_rank(): if not is_dist_avail_and_initialized(): return 0 return dist.get_rank() def get_process_groups(): world_size = int(os.environ['WORLD_SIZE']) ranks = list(range(world_size)) num_gpus = torch.cuda.device_count() num_nodes = world_size // num_gpus if world_size % num_gpus != 0: raise NotImplementedError('Not implemented for node not fully used.') groups = [] for node_idx in range(num_nodes): groups.append(ranks[node_idx * num_gpus:(node_idx + 1) * num_gpus]) process_groups = [torch.distributed.new_group(group) for group in groups] return process_groups def get_group_idx(): num_gpus = torch.cuda.device_count() proc_id = get_rank() group_idx = proc_id // num_gpus return group_idx def is_main_process(): return get_rank() == 0 def cleanup(): dist.destroy_process_group() def collect_results(result_part, size, tmpdir=None): rank, world_size = get_dist_info() # create a tmp dir if it is not specified if tmpdir is None: MAX_LEN = 512 # 32 is whitespace dir_tensor = torch.full((MAX_LEN, ), 32, dtype=torch.uint8, device='cuda') if rank == 0: tmpdir = tempfile.mkdtemp() tmpdir = torch.tensor(bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda') dir_tensor[:len(tmpdir)] = tmpdir dist.broadcast(dir_tensor, 0) tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip() else: mmcv.mkdir_or_exist(tmpdir) # dump the part result to the dir mmcv.dump(result_part, osp.join(tmpdir, f'part_{rank}.pkl')) dist.barrier() # collect all parts if rank != 0: return None else: # load results of all parts from tmp dir part_list = [] for i in range(world_size): part_file = osp.join(tmpdir, f'part_{i}.pkl') part_list.append(mmcv.load(part_file)) # sort the results ordered_results = [] for res in zip(*part_list): ordered_results.extend(list(res)) # the dataloader may pad some samples ordered_results = ordered_results[:size] # remove tmp dir shutil.rmtree(tmpdir) return ordered_results def all_gather(data): """ Run all_gather on arbitrary picklable data (not necessarily tensors) Args: data: Any picklable object Returns: data_list(list): List of data gathered from each rank """ world_size = get_world_size() if world_size == 1: return [data] # serialized to a Tensor buffer = pickle.dumps(data) storage = torch.ByteStorage.from_buffer(buffer) tensor = torch.ByteTensor(storage).to('cuda') # obtain Tensor size of each rank local_size = torch.tensor([tensor.numel()], device='cuda') size_list = [torch.tensor([0], device='cuda') for _ in range(world_size)] dist.all_gather(size_list, local_size) size_list = [int(size.item()) for size in size_list] max_size = max(size_list) # receiving Tensor from all ranks # we pad the tensor because torch all_gather does not support # gathering tensors of different shapes tensor_list = [] for _ in size_list: tensor_list.append( torch.empty((max_size, ), dtype=torch.uint8, device='cuda')) if local_size != max_size: padding = torch.empty(size=(max_size - local_size, ), dtype=torch.uint8, device='cuda') tensor = torch.cat((tensor, padding), dim=0) dist.all_gather(tensor_list, tensor) data_list = [] for size, tensor in zip(size_list, tensor_list): buffer = tensor.cpu().numpy().tobytes()[:size] data_list.append(pickle.loads(buffer)) return data_list