# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from mmcv.ops import knn @pytest.mark.skipif( not torch.cuda.is_available(), reason='requires CUDA support') def test_knn(): new_xyz = torch.tensor([[[-0.0740, 1.3147, -1.3625], [-2.2769, 2.7817, -0.2334], [-0.4003, 2.4666, -0.5116], [-0.0740, 1.3147, -1.3625], [-0.0740, 1.3147, -1.3625]], [[-2.0289, 2.4952, -0.1708], [-2.0668, 6.0278, -0.4875], [0.4066, 1.4211, -0.2947], [-2.0289, 2.4952, -0.1708], [-2.0289, 2.4952, -0.1708]]]).cuda() xyz = torch.tensor([[[-0.0740, 1.3147, -1.3625], [0.5555, 1.0399, -1.3634], [-0.4003, 2.4666, -0.5116], [-0.5251, 2.4379, -0.8466], [-0.9691, 1.1418, -1.3733], [-0.2232, 0.9561, -1.3626], [-2.2769, 2.7817, -0.2334], [-0.2822, 1.3192, -1.3645], [0.1533, 1.5024, -1.0432], [0.4917, 1.1529, -1.3496]], [[-2.0289, 2.4952, -0.1708], [-0.7188, 0.9956, -0.5096], [-2.0668, 6.0278, -0.4875], [-1.9304, 3.3092, 0.6610], [0.0949, 1.4332, 0.3140], [-1.2879, 2.0008, -0.7791], [-0.7252, 0.9611, -0.6371], [0.4066, 1.4211, -0.2947], [0.3220, 1.4447, 0.3548], [-0.9744, 2.3856, -1.2000]]]).cuda() idx = knn(5, xyz, new_xyz) new_xyz_ = new_xyz.unsqueeze(2).repeat(1, 1, xyz.shape[1], 1) xyz_ = xyz.unsqueeze(1).repeat(1, new_xyz.shape[1], 1, 1) dist = ((new_xyz_ - xyz_) * (new_xyz_ - xyz_)).sum(-1) expected_idx = dist.topk(k=5, dim=2, largest=False)[1].transpose(2, 1) assert torch.all(idx == expected_idx) idx = knn(5, xyz.transpose(1, 2).contiguous(), new_xyz.transpose(1, 2).contiguous(), True) assert torch.all(idx == expected_idx) idx = knn(5, xyz, xyz) xyz_ = xyz.unsqueeze(2).repeat(1, 1, xyz.shape[1], 1) xyz__ = xyz.unsqueeze(1).repeat(1, xyz.shape[1], 1, 1) dist = ((xyz_ - xyz__) * (xyz_ - xyz__)).sum(-1) expected_idx = dist.topk(k=5, dim=2, largest=False)[1].transpose(2, 1) assert torch.all(idx == expected_idx)