# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from mmcv.ops import grouping_operation @pytest.mark.skipif( not torch.cuda.is_available(), reason='requires CUDA support') def test_grouping_points(): idx = torch.tensor([[[0, 0, 0], [3, 3, 3], [8, 8, 8], [0, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [6, 6, 6], [9, 9, 9], [0, 0, 0], [0, 0, 0], [0, 0, 0]]]).int().cuda() festures = torch.tensor([[[ 0.5798, -0.7981, -0.9280, -1.3311, 1.3687, 0.9277, -0.4164, -1.8274, 0.9268, 0.8414 ], [ 5.4247, 1.5113, 2.3944, 1.4740, 5.0300, 5.1030, 1.9360, 2.1939, 2.1581, 3.4666 ], [ -1.6266, -1.0281, -1.0393, -1.6931, -1.3982, -0.5732, -1.0830, -1.7561, -1.6786, -1.6967 ]], [[ -0.0380, -0.1880, -1.5724, 0.6905, -0.3190, 0.7798, -0.3693, -0.9457, -0.2942, -1.8527 ], [ 1.1773, 1.5009, 2.6399, 5.9242, 1.0962, 2.7346, 6.0865, 1.5555, 4.3303, 2.8229 ], [ -0.6646, -0.6870, -0.1125, -0.2224, -0.3445, -1.4049, 0.4990, -0.7037, -0.9924, 0.0386 ]]]).cuda() output = grouping_operation(festures, idx) expected_output = torch.tensor([[[[0.5798, 0.5798, 0.5798], [-1.3311, -1.3311, -1.3311], [0.9268, 0.9268, 0.9268], [0.5798, 0.5798, 0.5798], [0.5798, 0.5798, 0.5798], [0.5798, 0.5798, 0.5798]], [[5.4247, 5.4247, 5.4247], [1.4740, 1.4740, 1.4740], [2.1581, 2.1581, 2.1581], [5.4247, 5.4247, 5.4247], [5.4247, 5.4247, 5.4247], [5.4247, 5.4247, 5.4247]], [[-1.6266, -1.6266, -1.6266], [-1.6931, -1.6931, -1.6931], [-1.6786, -1.6786, -1.6786], [-1.6266, -1.6266, -1.6266], [-1.6266, -1.6266, -1.6266], [-1.6266, -1.6266, -1.6266]]], [[[-0.0380, -0.0380, -0.0380], [-0.3693, -0.3693, -0.3693], [-1.8527, -1.8527, -1.8527], [-0.0380, -0.0380, -0.0380], [-0.0380, -0.0380, -0.0380], [-0.0380, -0.0380, -0.0380]], [[1.1773, 1.1773, 1.1773], [6.0865, 6.0865, 6.0865], [2.8229, 2.8229, 2.8229], [1.1773, 1.1773, 1.1773], [1.1773, 1.1773, 1.1773], [1.1773, 1.1773, 1.1773]], [[-0.6646, -0.6646, -0.6646], [0.4990, 0.4990, 0.4990], [0.0386, 0.0386, 0.0386], [-0.6646, -0.6646, -0.6646], [-0.6646, -0.6646, -0.6646], [-0.6646, -0.6646, -0.6646]]]]).cuda() assert torch.allclose(output, expected_output)