# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import pytest import torch from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE _USING_PARROTS = True try: from parrots.autograd import gradcheck except ImportError: from torch.autograd import gradcheck _USING_PARROTS = False # torch.set_printoptions(precision=8, threshold=100) inputs = [ ([[1., 0], [0, 1.]], [0, 1]), ([[1., 0, -1.], [0, 1., 2.]], [2, 1]), ([[1e-6, 2e-6, 3e-6], [4e-6, 5e-5, 6e-4], [7e-3, 8e-2, 9e-1]], [1, 2, 0]), ] softmax_outputs = [(0.00566451, [[-0.00657264, 0.00657264], [0.00657264, -0.00657264]]), (0.34956908, [[0.10165970, 0.03739851, -0.13905823], [0.01227554, -0.10298023, 0.09070466]]), (0.15754992, [[0.02590877, -0.05181759, 0.02590882], [0.02589641, 0.02589760, -0.05179400], [-0.07307514, 0.02234372, 0.05073142]])] sigmoid_outputs = [(0.13562961, [[-0.00657264, 0.11185755], [0.11185755, -0.00657264]]), (1.10251057, [[0.28808805, 0.11185755, -0.09602935], [0.11185755, -0.00657264, 0.40376765]]), (0.42287254, [[0.07457182, -0.02485716, 0.07457201], [0.07457211, 0.07457669, -0.02483728], [-0.02462499, 0.08277918, 0.18050370]])] class Testfocalloss: def _test_softmax(self, dtype=torch.float): if not torch.cuda.is_available(): return from mmcv.ops import softmax_focal_loss alpha = 0.25 gamma = 2.0 for case, output in zip(inputs, softmax_outputs): np_x = np.array(case[0]) np_y = np.array(case[1]) np_x_grad = np.array(output[1]) x = torch.from_numpy(np_x).cuda().type(dtype) x.requires_grad_() y = torch.from_numpy(np_y).cuda().long() loss = softmax_focal_loss(x, y, gamma, alpha, None, 'mean') loss.backward() assert np.allclose(loss.data.cpu().numpy(), output[0], 1e-2) assert np.allclose(x.grad.data.cpu(), np_x_grad, 1e-2) def _test_sigmoid(self, device, dtype=torch.float): from mmcv.ops import sigmoid_focal_loss alpha = 0.25 gamma = 2.0 for case, output in zip(inputs, sigmoid_outputs): np_x = np.array(case[0]) np_y = np.array(case[1]) np_x_grad = np.array(output[1]) x = torch.from_numpy(np_x).to(device).type(dtype) x.requires_grad_() y = torch.from_numpy(np_y).to(device).long() loss = sigmoid_focal_loss(x, y, gamma, alpha, None, 'mean') loss.backward() assert np.allclose(loss.data.cpu().numpy(), output[0], 1e-2) assert np.allclose(x.grad.data.cpu(), np_x_grad, 1e-2) def _test_grad_softmax(self, dtype=torch.float): if not torch.cuda.is_available(): return from mmcv.ops import SoftmaxFocalLoss alpha = 0.25 gamma = 2.0 for case in inputs: np_x = np.array(case[0]) np_y = np.array(case[1]) x = torch.from_numpy(np_x).cuda().type(dtype) x.requires_grad_() y = torch.from_numpy(np_y).cuda().long() floss = SoftmaxFocalLoss(gamma, alpha) if _USING_PARROTS: # gradcheck(floss, (x, y), # no_grads=[y]) pass else: gradcheck(floss, (x, y), eps=1e-2, atol=1e-2) def _test_grad_sigmoid(self, dtype=torch.float): if not torch.cuda.is_available(): return from mmcv.ops import SigmoidFocalLoss alpha = 0.25 gamma = 2.0 for case in inputs: np_x = np.array(case[0]) np_y = np.array(case[1]) x = torch.from_numpy(np_x).cuda().type(dtype) x.requires_grad_() y = torch.from_numpy(np_y).cuda().long() floss = SigmoidFocalLoss(gamma, alpha) if _USING_PARROTS: # gradcheck(floss, (x, y), # no_grads=[y]) pass else: gradcheck(floss, (x, y), eps=1e-2, atol=1e-2) def test_softmax_float(self): self._test_softmax(dtype=torch.float) def test_softmax_half(self): self._test_softmax(dtype=torch.half) @pytest.mark.parametrize('device', [ pytest.param( 'cuda', marks=pytest.mark.skipif( not IS_CUDA_AVAILABLE, reason='requires CUDA support')), pytest.param( 'mlu', marks=pytest.mark.skipif( not IS_MLU_AVAILABLE, reason='requires MLU support')) ]) def test_sigmoid_float(self, device): self._test_sigmoid(device=device, dtype=torch.float) @pytest.mark.parametrize('device', [ pytest.param( 'cuda', marks=pytest.mark.skipif( not IS_CUDA_AVAILABLE, reason='requires CUDA support')), pytest.param( 'mlu', marks=pytest.mark.skipif( not IS_MLU_AVAILABLE, reason='requires MLU support')) ]) def test_sigmoid_half(self, device): self._test_sigmoid(device, dtype=torch.half) def test_grad_softmax_float(self): self._test_grad_softmax(dtype=torch.float) def test_grad_sigmoid_float(self): self._test_grad_sigmoid(dtype=torch.float)