import os import os.path as osp import numpy as np import torch import cv2 import json import copy from pycocotools.coco import COCO from config.config import cfg from util.human_models import smpl_x from util.preprocessing import ( load_img, process_bbox, augmentation_instance_sample ,process_human_model_output_batch_simplify,process_db_coord_batch_no_valid) from util.transforms import world2cam, cam2pixel, rigid_align from humandata import HumanDataset class SynBody(HumanDataset): def __init__(self, transform, data_split): super(SynBody, self).__init__(transform, data_split) self.img_dir = 'data/datasets/synbody' self.annot_path = 'data/preprocessed_npz/multihuman_data/synbody_v1.1_multi_new.npz' self.annot_path_cache = 'data/preprocessed_npz/cache/synbody_v1.1_cache_new_10.npz' self.use_cache = getattr(cfg, 'use_cache', False) self.img_shape = (720, 1280) # (h, w) self.cam_param = { 'focal': (540, 540), # (fx, fy) 'princpt': (640, 360) # (cx, cy) } # check image shape img_path = osp.join(self.img_dir, np.load(self.annot_path)['image_path'][0]) img_shape = cv2.imread(img_path).shape[:2] assert self.img_shape == img_shape, 'image shape is incorrect: {} vs {}'.format( self.img_shape, img_shape) # load data or cache if self.use_cache and osp.isfile(self.annot_path_cache): print( f'[{self.__class__.__name__}] loading cache from {self.annot_path_cache}' ) self.datalist = self.load_cache(self.annot_path_cache) else: if self.use_cache: print( f'[{self.__class__.__name__}] Cache not found, generating cache...' ) self.datalist = self.load_data(train_sample_interval=getattr( cfg, f'{self.__class__.__name__}_train_sample_interval', 15)) if self.use_cache: self.save_cache(self.annot_path_cache, self.datalist)