# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import pytest import torch from mmcv.ops import (RoIAwarePool3d, points_in_boxes_all, points_in_boxes_cpu, points_in_boxes_part) @pytest.mark.skipif( not torch.cuda.is_available(), reason='requires CUDA support') def test_RoIAwarePool3d(): roiaware_pool3d_max = RoIAwarePool3d( out_size=4, max_pts_per_voxel=128, mode='max') roiaware_pool3d_avg = RoIAwarePool3d( out_size=4, max_pts_per_voxel=128, mode='avg') rois = torch.tensor( [[1.0, 2.0, 3.0, 5.0, 4.0, 6.0, -0.3 - np.pi / 2], [-10.0, 23.0, 16.0, 20.0, 10.0, 20.0, -0.5 - np.pi / 2]], dtype=torch.float32).cuda( ) # boxes (m, 7) with bottom center in lidar coordinate pts = torch.tensor( [[1, 2, 3.3], [1.2, 2.5, 3.0], [0.8, 2.1, 3.5], [1.6, 2.6, 3.6], [0.8, 1.2, 3.9], [-9.2, 21.0, 18.2], [3.8, 7.9, 6.3], [4.7, 3.5, -12.2], [3.8, 7.6, -2], [-10.6, -12.9, -20], [-16, -18, 9], [-21.3, -52, -5], [0, 0, 0], [6, 7, 8], [-2, -3, -4]], dtype=torch.float32).cuda() # points (n, 3) in lidar coordinate pts_feature = pts.clone() pooled_features_max = roiaware_pool3d_max( rois=rois, pts=pts, pts_feature=pts_feature) assert pooled_features_max.shape == torch.Size([2, 4, 4, 4, 3]) assert torch.allclose(pooled_features_max.sum(), torch.tensor(51.100).cuda(), 1e-3) pooled_features_avg = roiaware_pool3d_avg( rois=rois, pts=pts, pts_feature=pts_feature) assert pooled_features_avg.shape == torch.Size([2, 4, 4, 4, 3]) assert torch.allclose(pooled_features_avg.sum(), torch.tensor(49.750).cuda(), 1e-3) @pytest.mark.skipif( not torch.cuda.is_available(), reason='requires CUDA support') def test_points_in_boxes_part(): boxes = torch.tensor( [[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.3]], [[-10.0, 23.0, 16.0, 10, 20, 20, 0.5]]], dtype=torch.float32).cuda( ) # boxes (b, t, 7) with bottom center in lidar coordinate pts = torch.tensor( [[[1, 2, 3.3], [1.2, 2.5, 3.0], [0.8, 2.1, 3.5], [1.6, 2.6, 3.6], [0.8, 1.2, 3.9], [-9.2, 21.0, 18.2], [3.8, 7.9, 6.3], [4.7, 3.5, -12.2]], [[3.8, 7.6, -2], [-10.6, -12.9, -20], [-16, -18, 9], [-21.3, -52, -5], [0, 0, 0], [6, 7, 8], [-2, -3, -4], [6, 4, 9]]], dtype=torch.float32).cuda() # points (b, m, 3) in lidar coordinate point_indices = points_in_boxes_part(points=pts, boxes=boxes) expected_point_indices = torch.tensor( [[0, 0, 0, 0, 0, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1]], dtype=torch.int32).cuda() assert point_indices.shape == torch.Size([2, 8]) assert (point_indices == expected_point_indices).all() boxes = torch.tensor([[[0.0, 0.0, 0.0, 1.0, 20.0, 1.0, 0.523598]]], dtype=torch.float32).cuda() # 30 degrees pts = torch.tensor( [[[4, 6.928, 0], [6.928, 4, 0], [4, -6.928, 0], [6.928, -4, 0], [-4, 6.928, 0], [-6.928, 4, 0], [-4, -6.928, 0], [-6.928, -4, 0]]], dtype=torch.float32).cuda() point_indices = points_in_boxes_part(points=pts, boxes=boxes) expected_point_indices = torch.tensor([[-1, -1, 0, -1, 0, -1, -1, -1]], dtype=torch.int32).cuda() assert (point_indices == expected_point_indices).all() def test_points_in_boxes_cpu(): boxes = torch.tensor( [[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.3], [-10.0, 23.0, 16.0, 10, 20, 20, 0.5]]], dtype=torch.float32 ) # boxes (m, 7) with bottom center in lidar coordinate pts = torch.tensor( [[[1, 2, 3.3], [1.2, 2.5, 3.0], [0.8, 2.1, 3.5], [1.6, 2.6, 3.6], [0.8, 1.2, 3.9], [-9.2, 21.0, 18.2], [3.8, 7.9, 6.3], [4.7, 3.5, -12.2], [3.8, 7.6, -2], [-10.6, -12.9, -20], [ -16, -18, 9 ], [-21.3, -52, -5], [0, 0, 0], [6, 7, 8], [-2, -3, -4]]], dtype=torch.float32) # points (n, 3) in lidar coordinate point_indices = points_in_boxes_cpu(points=pts, boxes=boxes) expected_point_indices = torch.tensor( [[[1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [0, 1], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]]], dtype=torch.int32) assert point_indices.shape == torch.Size([1, 15, 2]) assert (point_indices == expected_point_indices).all() boxes = torch.tensor([[[0.0, 0.0, 0.0, 1.0, 20.0, 1.0, 0.523598]]], dtype=torch.float32) # 30 degrees pts = torch.tensor( [[[4, 6.928, 0], [6.928, 4, 0], [4, -6.928, 0], [6.928, -4, 0], [-4, 6.928, 0], [-6.928, 4, 0], [-4, -6.928, 0], [-6.928, -4, 0]]], dtype=torch.float32) point_indices = points_in_boxes_cpu(points=pts, boxes=boxes) expected_point_indices = torch.tensor( [[[0], [0], [1], [0], [1], [0], [0], [0]]], dtype=torch.int32) assert (point_indices == expected_point_indices).all() @pytest.mark.skipif( not torch.cuda.is_available(), reason='requires CUDA support') def test_points_in_boxes_all(): boxes = torch.tensor( [[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.3], [-10.0, 23.0, 16.0, 10, 20, 20, 0.5]]], dtype=torch.float32).cuda( ) # boxes (m, 7) with bottom center in lidar coordinate pts = torch.tensor( [[[1, 2, 3.3], [1.2, 2.5, 3.0], [0.8, 2.1, 3.5], [1.6, 2.6, 3.6], [0.8, 1.2, 3.9], [-9.2, 21.0, 18.2], [3.8, 7.9, 6.3], [4.7, 3.5, -12.2], [3.8, 7.6, -2], [-10.6, -12.9, -20], [ -16, -18, 9 ], [-21.3, -52, -5], [0, 0, 0], [6, 7, 8], [-2, -3, -4]]], dtype=torch.float32).cuda() # points (n, 3) in lidar coordinate point_indices = points_in_boxes_all(points=pts, boxes=boxes) expected_point_indices = torch.tensor( [[[1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [0, 1], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]]], dtype=torch.int32).cuda() assert point_indices.shape == torch.Size([1, 15, 2]) assert (point_indices == expected_point_indices).all() if torch.cuda.device_count() > 1: pts = pts.to('cuda:1') boxes = boxes.to('cuda:1') expected_point_indices = expected_point_indices.to('cuda:1') point_indices = points_in_boxes_all(points=pts, boxes=boxes) assert point_indices.shape == torch.Size([1, 15, 2]) assert (point_indices == expected_point_indices).all()