# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import cv2 import numpy as np import pytest from numpy.testing import assert_array_equal import mmcv class TestPhotometric: @classmethod def setup_class(cls): # the test img resolution is 400x300 cls.img_path = osp.join(osp.dirname(__file__), '../data/color.jpg') cls.img = cv2.imread(cls.img_path) cls.mean = np.array([123.675, 116.28, 103.53], dtype=np.float32) cls.std = np.array([58.395, 57.12, 57.375], dtype=np.float32) def test_imnormalize(self): rgb_img = self.img[:, :, ::-1] baseline = (rgb_img - self.mean) / self.std img = mmcv.imnormalize(self.img, self.mean, self.std) assert np.allclose(img, baseline) assert id(img) != id(self.img) img = mmcv.imnormalize(rgb_img, self.mean, self.std, to_rgb=False) assert np.allclose(img, baseline) assert id(img) != id(rgb_img) def test_imnormalize_(self): img_for_normalize = np.float32(self.img) rgb_img_for_normalize = np.float32(self.img[:, :, ::-1]) baseline = (rgb_img_for_normalize - self.mean) / self.std img = mmcv.imnormalize_(img_for_normalize, self.mean, self.std) assert np.allclose(img_for_normalize, baseline) assert id(img) == id(img_for_normalize) img = mmcv.imnormalize_( rgb_img_for_normalize, self.mean, self.std, to_rgb=False) assert np.allclose(img, baseline) assert id(img) == id(rgb_img_for_normalize) def test_imdenormalize(self): norm_img = (self.img[:, :, ::-1] - self.mean) / self.std rgb_baseline = (norm_img * self.std + self.mean) bgr_baseline = rgb_baseline[:, :, ::-1] img = mmcv.imdenormalize(norm_img, self.mean, self.std) assert np.allclose(img, bgr_baseline) img = mmcv.imdenormalize(norm_img, self.mean, self.std, to_bgr=False) assert np.allclose(img, rgb_baseline) def test_iminvert(self): img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]], dtype=np.uint8) img_r = np.array([[255, 127, 0], [254, 128, 1], [253, 126, 2]], dtype=np.uint8) assert_array_equal(mmcv.iminvert(img), img_r) def test_solarize(self): img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]], dtype=np.uint8) img_r = np.array([[0, 127, 0], [1, 127, 1], [2, 126, 2]], dtype=np.uint8) assert_array_equal(mmcv.solarize(img), img_r) img_r = np.array([[0, 127, 0], [1, 128, 1], [2, 126, 2]], dtype=np.uint8) assert_array_equal(mmcv.solarize(img, 100), img_r) def test_posterize(self): img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]], dtype=np.uint8) img_r = np.array([[0, 128, 128], [0, 0, 128], [0, 128, 128]], dtype=np.uint8) assert_array_equal(mmcv.posterize(img, 1), img_r) img_r = np.array([[0, 128, 224], [0, 96, 224], [0, 128, 224]], dtype=np.uint8) assert_array_equal(mmcv.posterize(img, 3), img_r) def test_adjust_color(self): img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]], dtype=np.uint8) img = np.stack([img, img, img], axis=-1) assert_array_equal(mmcv.adjust_color(img), img) img_gray = mmcv.bgr2gray(img) img_r = np.stack([img_gray, img_gray, img_gray], axis=-1) assert_array_equal(mmcv.adjust_color(img, 0), img_r) assert_array_equal(mmcv.adjust_color(img, 0, 1), img_r) assert_array_equal( mmcv.adjust_color(img, 0.5, 0.5), np.round(np.clip((img * 0.5 + img_r * 0.5), 0, 255)).astype(img.dtype)) assert_array_equal( mmcv.adjust_color(img, 1, 1.5), np.round(np.clip(img * 1 + img_r * 1.5, 0, 255)).astype(img.dtype)) assert_array_equal( mmcv.adjust_color(img, 0.8, -0.6, gamma=2), np.round(np.clip(img * 0.8 - 0.6 * img_r + 2, 0, 255)).astype(img.dtype)) assert_array_equal( mmcv.adjust_color(img, 0.8, -0.6, gamma=-0.6), np.round(np.clip(img * 0.8 - 0.6 * img_r - 0.6, 0, 255)).astype(img.dtype)) # test float type of image img = img.astype(np.float32) assert_array_equal( np.round(mmcv.adjust_color(img, 0.8, -0.6, gamma=-0.6)), np.round(np.clip(img * 0.8 - 0.6 * img_r - 0.6, 0, 255))) def test_imequalize(self, nb_rand_test=100): def _imequalize(img): # equalize the image using PIL.ImageOps.equalize from PIL import Image, ImageOps img = Image.fromarray(img) equalized_img = np.asarray(ImageOps.equalize(img)) return equalized_img img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]], dtype=np.uint8) img = np.stack([img, img, img], axis=-1) equalized_img = mmcv.imequalize(img) assert_array_equal(equalized_img, _imequalize(img)) # test equalize with case step=0 img = np.array([[0, 0, 0], [120, 120, 120], [255, 255, 255]], dtype=np.uint8) img = np.stack([img, img, img], axis=-1) assert_array_equal(mmcv.imequalize(img), img) # test equalize with randomly sampled image. for _ in range(nb_rand_test): img = np.clip(np.random.normal(0, 1, (256, 256, 3)) * 260, 0, 255).astype(np.uint8) equalized_img = mmcv.imequalize(img) assert_array_equal(equalized_img, _imequalize(img)) def test_adjust_brightness(self, nb_rand_test=100): def _adjust_brightness(img, factor): # adjust the brightness of image using # PIL.ImageEnhance.Brightness from PIL import Image from PIL.ImageEnhance import Brightness img = Image.fromarray(img) brightened_img = Brightness(img).enhance(factor) return np.asarray(brightened_img) img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]], dtype=np.uint8) img = np.stack([img, img, img], axis=-1) # test case with factor 1.0 assert_array_equal(mmcv.adjust_brightness(img, 1.), img) # test case with factor 0.0 assert_array_equal(mmcv.adjust_brightness(img, 0.), np.zeros_like(img)) # test adjust_brightness with randomly sampled images and factors. for _ in range(nb_rand_test): img = np.clip( np.random.uniform(0, 1, (1000, 1200, 3)) * 260, 0, 255).astype(np.uint8) factor = np.random.uniform() + np.random.choice([0, 1]) np.testing.assert_allclose( mmcv.adjust_brightness(img, factor).astype(np.int32), _adjust_brightness(img, factor).astype(np.int32), rtol=0, atol=1) def test_adjust_contrast(self, nb_rand_test=100): def _adjust_contrast(img, factor): from PIL import Image from PIL.ImageEnhance import Contrast # Image.fromarray defaultly supports RGB, not BGR. # convert from BGR to RGB img = Image.fromarray(img[..., ::-1], mode='RGB') contrasted_img = Contrast(img).enhance(factor) # convert from RGB to BGR return np.asarray(contrasted_img)[..., ::-1] img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]], dtype=np.uint8) img = np.stack([img, img, img], axis=-1) # test case with factor 1.0 assert_array_equal(mmcv.adjust_contrast(img, 1.), img) # test case with factor 0.0 assert_array_equal( mmcv.adjust_contrast(img, 0.), _adjust_contrast(img, 0.)) # test adjust_contrast with randomly sampled images and factors. for _ in range(nb_rand_test): img = np.clip( np.random.uniform(0, 1, (1200, 1000, 3)) * 260, 0, 255).astype(np.uint8) factor = np.random.uniform() + np.random.choice([0, 1]) # Note the gap (less_equal 1) between PIL.ImageEnhance.Contrast # and mmcv.adjust_contrast comes from the gap that converts from # a color image to gray image using mmcv or PIL. np.testing.assert_allclose( mmcv.adjust_contrast(img, factor).astype(np.int32), _adjust_contrast(img, factor).astype(np.int32), rtol=0, atol=1) def test_auto_contrast(self, nb_rand_test=100): def _auto_contrast(img, cutoff=0): from PIL import Image from PIL.ImageOps import autocontrast # Image.fromarray defaultly supports RGB, not BGR. # convert from BGR to RGB img = Image.fromarray(img[..., ::-1], mode='RGB') contrasted_img = autocontrast(img, cutoff) # convert from RGB to BGR return np.asarray(contrasted_img)[..., ::-1] img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]], dtype=np.uint8) img = np.stack([img, img, img], axis=-1) # test case without cut-off assert_array_equal(mmcv.auto_contrast(img), _auto_contrast(img)) # test case with cut-off as int assert_array_equal( mmcv.auto_contrast(img, 10), _auto_contrast(img, 10)) # test case with cut-off as float assert_array_equal( mmcv.auto_contrast(img, 12.5), _auto_contrast(img, 12.5)) # test case with cut-off as tuple assert_array_equal( mmcv.auto_contrast(img, (10, 10)), _auto_contrast(img, 10)) # test case with cut-off with sum over 100 assert_array_equal( mmcv.auto_contrast(img, 60), _auto_contrast(img, 60)) # test auto_contrast with randomly sampled images and factors. for _ in range(nb_rand_test): img = np.clip( np.random.uniform(0, 1, (1200, 1000, 3)) * 260, 0, 255).astype(np.uint8) # cut-offs are not set as tuple since in `build.yml`, pillow 6.2.2 # is installed, which does not support setting low cut-off and high # cut-off differently. # With pillow above 8.0.0, cutoff can be set as tuple cutoff = np.random.rand() * 100 assert_array_equal( mmcv.auto_contrast(img, cutoff), _auto_contrast(img, cutoff)) def test_adjust_sharpness(self, nb_rand_test=100): def _adjust_sharpness(img, factor): # adjust the sharpness of image using # PIL.ImageEnhance.Sharpness from PIL import Image from PIL.ImageEnhance import Sharpness img = Image.fromarray(img) sharpened_img = Sharpness(img).enhance(factor) return np.asarray(sharpened_img) img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]], dtype=np.uint8) img = np.stack([img, img, img], axis=-1) # test case with invalid type of kernel with pytest.raises(AssertionError): mmcv.adjust_sharpness(img, 1., kernel=1.) # test case with invalid shape of kernel kernel = np.ones((3, 3, 3)) with pytest.raises(AssertionError): mmcv.adjust_sharpness(img, 1., kernel=kernel) # test case with all-zero kernel, factor 0.0 kernel = np.zeros((3, 3)) assert_array_equal( mmcv.adjust_sharpness(img, 0., kernel=kernel), np.zeros_like(img)) # test case with factor 1.0 assert_array_equal(mmcv.adjust_sharpness(img, 1.), img) # test adjust_sharpness with randomly sampled images and factors. for _ in range(nb_rand_test): img = np.clip( np.random.uniform(0, 1, (1000, 1200, 3)) * 260, 0, 255).astype(np.uint8) factor = np.random.uniform() # Note the gap between PIL.ImageEnhance.Sharpness and # mmcv.adjust_sharpness mainly comes from the difference ways of # handling img edges when applying filters np.testing.assert_allclose( mmcv.adjust_sharpness(img, factor).astype(np.int32)[1:-1, 1:-1], _adjust_sharpness(img, factor).astype(np.int32)[1:-1, 1:-1], rtol=0, atol=1) def test_adjust_lighting(self): img = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]).astype(np.uint8) img = np.stack([img, img, img], axis=-1) # eigval and eigvec must be np.ndarray with pytest.raises(AssertionError): mmcv.adjust_lighting(img, 1, np.ones((3, 1))) with pytest.raises(AssertionError): mmcv.adjust_lighting(img, np.array([1]), (1, 1, 1)) # we must have the same number of eigval and eigvec with pytest.raises(AssertionError): mmcv.adjust_lighting(img, np.array([1]), np.eye(2)) with pytest.raises(AssertionError): mmcv.adjust_lighting(img, np.array([1]), np.array([1])) img_adjusted = mmcv.adjust_lighting( img, np.random.normal(0, 1, 2), np.random.normal(0, 1, (3, 2)), alphastd=0.) assert_array_equal(img_adjusted, img) def test_lut_transform(self): lut_table = np.array(list(range(256))) # test assertion image values should between 0 and 255. with pytest.raises(AssertionError): mmcv.lut_transform(np.array([256]), lut_table) with pytest.raises(AssertionError): mmcv.lut_transform(np.array([-1]), lut_table) # test assertion lut_table should be ndarray with shape (256, ) with pytest.raises(AssertionError): mmcv.lut_transform(np.array([0]), list(range(256))) with pytest.raises(AssertionError): mmcv.lut_transform(np.array([1]), np.array(list(range(257)))) img = mmcv.lut_transform(self.img, lut_table) baseline = cv2.LUT(self.img, lut_table) assert np.allclose(img, baseline) input_img = np.array( [[[0, 128, 255], [255, 128, 0]], [[0, 128, 255], [255, 128, 0]]], dtype=float) img = mmcv.lut_transform(input_img, lut_table) baseline = cv2.LUT(np.array(input_img, dtype=np.uint8), lut_table) assert np.allclose(img, baseline) input_img = np.random.randint(0, 256, size=(7, 8, 9, 10, 11)) img = mmcv.lut_transform(input_img, lut_table) baseline = cv2.LUT(np.array(input_img, dtype=np.uint8), lut_table) assert np.allclose(img, baseline) def test_clahe(self): def _clahe(img, clip_limit=40.0, tile_grid_size=(8, 8)): clahe = cv2.createCLAHE(clip_limit, tile_grid_size) return clahe.apply(np.array(img, dtype=np.uint8)) # test assertion image should have the right shape with pytest.raises(AssertionError): mmcv.clahe(self.img) # test assertion tile_grid_size should be a tuple with 2 integers with pytest.raises(AssertionError): mmcv.clahe(self.img[:, :, 0], tile_grid_size=(8.0, 8.0)) with pytest.raises(AssertionError): mmcv.clahe(self.img[:, :, 0], tile_grid_size=(8, 8, 8)) with pytest.raises(AssertionError): mmcv.clahe(self.img[:, :, 0], tile_grid_size=[8, 8]) # test with different channels for i in range(self.img.shape[-1]): img = mmcv.clahe(self.img[:, :, i]) img_std = _clahe(self.img[:, :, i]) assert np.allclose(img, img_std) assert id(img) != id(self.img[:, :, i]) assert id(img_std) != id(self.img[:, :, i]) # test case with clip_limit=1.2 for i in range(self.img.shape[-1]): img = mmcv.clahe(self.img[:, :, i], 1.2) img_std = _clahe(self.img[:, :, i], 1.2) assert np.allclose(img, img_std) assert id(img) != id(self.img[:, :, i]) assert id(img_std) != id(self.img[:, :, i]) def test_adjust_hue(self): from PIL import Image def _adjust_hue(img, hue_factor): input_mode = img.mode if input_mode in {'L', '1', 'I', 'F'}: return img h, s, v = img.convert('HSV').split() np_h = np.array(h, dtype=np.uint8) # uint8 addition take cares of rotation across boundaries with np.errstate(over='ignore'): np_h += np.uint8(hue_factor * 255) h = Image.fromarray(np_h, 'L') img = Image.merge('HSV', (h, s, v)).convert(input_mode) return img pil_img = Image.fromarray(self.img) # test case with img is not ndarray with pytest.raises(TypeError): mmcv.adjust_hue(pil_img, hue_factor=0.0) # test case with hue_factor > 0.5 or hue_factor < -0.5 with pytest.raises(ValueError): mmcv.adjust_hue(self.img, hue_factor=-0.6) with pytest.raises(ValueError): mmcv.adjust_hue(self.img, hue_factor=0.6) for i in np.arange(-0.5, 0.5, 0.2): pil_res = _adjust_hue(pil_img, hue_factor=i) pil_res = np.array(pil_res) cv2_res = mmcv.adjust_hue(self.img, hue_factor=i) assert np.allclose(pil_res, cv2_res, atol=10.0)