# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import pytest import mmcv def test_quantize(): arr = np.random.randn(10, 10) levels = 20 qarr = mmcv.quantize(arr, -1, 1, levels) assert qarr.shape == arr.shape assert qarr.dtype == np.dtype('int64') for i in range(arr.shape[0]): for j in range(arr.shape[1]): ref = min(levels - 1, int(np.floor(10 * (1 + max(min(arr[i, j], 1), -1))))) assert qarr[i, j] == ref qarr = mmcv.quantize(arr, -1, 1, 20, dtype=np.uint8) assert qarr.shape == arr.shape assert qarr.dtype == np.dtype('uint8') with pytest.raises(ValueError): mmcv.quantize(arr, -1, 1, levels=0) with pytest.raises(ValueError): mmcv.quantize(arr, -1, 1, levels=10.0) with pytest.raises(ValueError): mmcv.quantize(arr, 2, 1, levels) def test_dequantize(): levels = 20 qarr = np.random.randint(levels, size=(10, 10)) arr = mmcv.dequantize(qarr, -1, 1, levels) assert arr.shape == qarr.shape assert arr.dtype == np.dtype('float64') for i in range(qarr.shape[0]): for j in range(qarr.shape[1]): assert arr[i, j] == (qarr[i, j] + 0.5) / 10 - 1 arr = mmcv.dequantize(qarr, -1, 1, levels, dtype=np.float32) assert arr.shape == qarr.shape assert arr.dtype == np.dtype('float32') with pytest.raises(ValueError): mmcv.dequantize(arr, -1, 1, levels=0) with pytest.raises(ValueError): mmcv.dequantize(arr, -1, 1, levels=10.0) with pytest.raises(ValueError): mmcv.dequantize(arr, 2, 1, levels) def test_joint(): arr = np.random.randn(100, 100) levels = 1000 qarr = mmcv.quantize(arr, -1, 1, levels) recover = mmcv.dequantize(qarr, -1, 1, levels) assert np.abs(recover[arr < -1] + 0.999).max() < 1e-6 assert np.abs(recover[arr > 1] - 0.999).max() < 1e-6 assert np.abs((recover - arr)[(arr >= -1) & (arr <= 1)]).max() <= 1e-3 arr = np.clip(np.random.randn(100) / 1000, -0.01, 0.01) levels = 99 qarr = mmcv.quantize(arr, -1, 1, levels) recover = mmcv.dequantize(qarr, -1, 1, levels) assert np.all(recover == 0)