import torch import torch.nn as nn def rotation_distance_loss(pred, target, epsilon): """Warpper of rotation distance loss.""" tr = torch.einsum( 'bij,bij->b', [pred.view(-1, 3, 3), target.view(-1, 3, 3)]) theta = (tr - 1) * 0.5 loss = torch.acos(torch.clamp(theta, -1 + epsilon, 1 - epsilon)) return loss class RotationDistance(nn.Module): """Rotation Distance Loss. Args: reduction (str, optional): The method that reduces the loss to a scalar. Options are "none", "mean" and "sum". epsilon (float, optional): A minimal value to avoid NaN. loss_weight (float, optional): The weight of the loss. Defaults to 1.0 """ def __init__(self, reduction='mean', epsilon=1e-7, loss_weight=1.0): super(RotationDistance, self).__init__() assert reduction in (None, 'none', 'mean', 'sum') reduction = 'none' if reduction is None else reduction self.reduction = reduction self.epsilon = epsilon self.loss_weight = loss_weight def forward(self, pred, target, weight=None, avg_factor=None, reduction_override=None): """Forward function of loss. Args: pred (torch.Tensor): The prediction. target (torch.Tensor): The learning target of the prediction. weight (torch.Tensor, optional): Weight of the loss for each prediction. Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Defaults to None. Returns: torch.Tensor: The calculated loss """ assert reduction_override in (None, 'none', 'mean', 'sum') loss = self.loss_weight * rotation_distance_loss( pred, target, epsilon=self.epsilon) if weight is not None: loss = loss.view(pred.shape[0], -1) * weight.view( pred.shape[0], -1) return loss.sum() / (weight.gt(0).sum() + self.epsilon) else: return loss.sum() / pred.shape[0]