from torch.utils.data.dataset import ConcatDataset as _ConcatDataset from torch.utils.data.dataset import Dataset from .builder import DATASETS @DATASETS.register_module() class ConcatDataset(_ConcatDataset): """A wrapper of concatenated dataset. Same as :obj:`torch.utils.data.dataset.ConcatDataset`, but add `get_cat_ids` function. Args: datasets (list[:obj:`Dataset`]): A list of datasets. """ def __init__(self, datasets: list): super(ConcatDataset, self).__init__(datasets) @DATASETS.register_module() class RepeatDataset(object): """A wrapper of repeated dataset. The length of repeated dataset will be `times` larger than the original dataset. This is useful when the data loading time is long but the dataset is small. Using RepeatDataset can reduce the data loading time between epochs. Args: dataset (:obj:`Dataset`): The dataset to be repeated. times (int): Repeat times. """ def __init__(self, dataset: Dataset, times: int): self.dataset = dataset self.times = times self.CLASSES = dataset.CLASSES self._ori_len = len(self.dataset) def __getitem__(self, idx: int): return self.dataset[idx % self._ori_len] def __len__(self): return self.times * self._ori_len