import os.path as osp from config.config import cfg from humandata import HumanDataset class BEDLAM(HumanDataset): def __init__(self, transform, data_split): super(BEDLAM, self).__init__(transform, data_split) self.img_dir = './data/datasets/bedlam/train_images/' self.annot_path = 'data/preprocessed_npz/multihuman_data/bedlam_train_multi_0915.npz' self.annot_path_cache = 'data/preprocessed_npz/cache/bedlam_train_cache_080824.npz' self.use_cache = getattr(cfg, 'use_cache', False) self.img_shape = None #1024, 1024) # (h, w) self.cam_param = {} # load data or cache if self.use_cache and osp.isfile(self.annot_path_cache): print( f'[{self.__class__.__name__}] loading cache from {self.annot_path_cache}' ) self.datalist = self.load_cache(self.annot_path_cache) else: if self.use_cache: print( f'[{self.__class__.__name__}] Cache not found, generating cache...' ) self.datalist = self.load_data(train_sample_interval=getattr( cfg, f'{self.__class__.__name__}_train_sample_interval', 5)) if self.use_cache: self.save_cache(self.annot_path_cache, self.datalist)