# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import pytest import torch from mmcv.ops import points_in_polygons @pytest.mark.skipif( not torch.cuda.is_available(), reason='requires CUDA support') def test_points_in_polygons(): points = np.array([[300., 300.], [400., 400.], [100., 100], [300, 250], [100, 0]]) polygons = np.array([[200., 200., 400., 400., 500., 200., 400., 100.], [400., 400., 500., 500., 600., 300., 500., 200.], [300., 300., 600., 700., 700., 700., 700., 100.]]) expected_output = np.array([[0., 0., 0.], [0., 0., 1.], [0., 0., 0.], [1., 0., 0.], [0., 0., 0.]]) points = torch.from_numpy(points).cuda().float() polygons = torch.from_numpy(polygons).cuda().float() expected_output = torch.from_numpy(expected_output).cuda().float() assert torch.allclose( points_in_polygons(points, polygons), expected_output, 1e-3)