# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from mmcv.ops import furthest_point_sample, furthest_point_sample_with_dist @pytest.mark.skipif( not torch.cuda.is_available(), reason='requires CUDA support') def test_fps(): xyz = torch.tensor([[[-0.2748, 1.0020, -1.1674], [0.1015, 1.3952, -1.2681], [-0.8070, 2.4137, -0.5845], [-1.0001, 2.1982, -0.5859], [0.3841, 1.8983, -0.7431]], [[-1.0696, 3.0758, -0.1899], [-0.2559, 3.5521, -0.1402], [0.8164, 4.0081, -0.1839], [-1.1000, 3.0213, -0.8205], [-0.0518, 3.7251, -0.3950]]]).cuda() idx = furthest_point_sample(xyz, 3) expected_idx = torch.tensor([[0, 2, 4], [0, 2, 1]]).cuda() assert torch.all(idx == expected_idx) @pytest.mark.skipif( not torch.cuda.is_available(), reason='requires CUDA support') def test_fps_with_dist(): xyz = torch.tensor([[[-0.2748, 1.0020, -1.1674], [0.1015, 1.3952, -1.2681], [-0.8070, 2.4137, -0.5845], [-1.0001, 2.1982, -0.5859], [0.3841, 1.8983, -0.7431]], [[-1.0696, 3.0758, -0.1899], [-0.2559, 3.5521, -0.1402], [0.8164, 4.0081, -0.1839], [-1.1000, 3.0213, -0.8205], [-0.0518, 3.7251, -0.3950]]]).cuda() expected_idx = torch.tensor([[0, 2, 4], [0, 2, 1]]).cuda() xyz_square_dist = ((xyz.unsqueeze(dim=1) - xyz.unsqueeze(dim=2))**2).sum(-1) idx = furthest_point_sample_with_dist(xyz_square_dist, 3) assert torch.all(idx == expected_idx) import numpy as np fps_idx = np.load('tests/data/for_3d_ops/fps_idx.npy') features_for_fps_distance = np.load( 'tests/data/for_3d_ops/features_for_fps_distance.npy') expected_idx = torch.from_numpy(fps_idx).cuda() features_for_fps_distance = torch.from_numpy( features_for_fps_distance).cuda() idx = furthest_point_sample_with_dist(features_for_fps_distance, 16) assert torch.all(idx == expected_idx)