# Copyright (c) OpenMMLab. All rights reserved. import os import numpy as np import torch _USING_PARROTS = True try: from parrots.autograd import gradcheck except ImportError: from torch.autograd import gradcheck _USING_PARROTS = False cur_dir = os.path.dirname(os.path.abspath(__file__)) inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0., 0., 1., 1.]]), ([[[[1., 2.], [3., 4.]], [[4., 3.], [2., 1.]]]], [[0., 0., 0., 1., 1.]]), ([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.], [11., 12., 15., 16.]]]], [[0., 0., 0., 3., 3.]])] outputs = [([[[[1, 1.25], [1.5, 1.75]]]], [[[[3.0625, 0.4375], [0.4375, 0.0625]]]]), ([[[[1., 1.25], [1.5, 1.75]], [[4, 3.75], [3.5, 3.25]]]], [[[[3.0625, 0.4375], [0.4375, 0.0625]], [[3.0625, 0.4375], [0.4375, 0.0625]]]]), ([[[[1.9375, 4.75], [7.5625, 10.375]]]], [[[[0.47265625, 0.4296875, 0.4296875, 0.04296875], [0.4296875, 0.390625, 0.390625, 0.0390625], [0.4296875, 0.390625, 0.390625, 0.0390625], [0.04296875, 0.0390625, 0.0390625, 0.00390625]]]])] class TestDeformRoIPool: def test_deform_roi_pool_gradcheck(self): if not torch.cuda.is_available(): return from mmcv.ops import DeformRoIPoolPack pool_h = 2 pool_w = 2 spatial_scale = 1.0 sampling_ratio = 2 for case in inputs: np_input = np.array(case[0]) np_rois = np.array(case[1]) x = torch.tensor( np_input, device='cuda', dtype=torch.float, requires_grad=True) rois = torch.tensor(np_rois, device='cuda', dtype=torch.float) output_c = x.size(1) droipool = DeformRoIPoolPack((pool_h, pool_w), output_c, spatial_scale=spatial_scale, sampling_ratio=sampling_ratio).cuda() if _USING_PARROTS: gradcheck(droipool, (x, rois), no_grads=[rois]) else: gradcheck(droipool, (x, rois), eps=1e-2, atol=1e-2) def test_modulated_deform_roi_pool_gradcheck(self): if not torch.cuda.is_available(): return from mmcv.ops import ModulatedDeformRoIPoolPack pool_h = 2 pool_w = 2 spatial_scale = 1.0 sampling_ratio = 2 for case in inputs: np_input = np.array(case[0]) np_rois = np.array(case[1]) x = torch.tensor( np_input, device='cuda', dtype=torch.float, requires_grad=True) rois = torch.tensor(np_rois, device='cuda', dtype=torch.float) output_c = x.size(1) droipool = ModulatedDeformRoIPoolPack( (pool_h, pool_w), output_c, spatial_scale=spatial_scale, sampling_ratio=sampling_ratio).cuda() if _USING_PARROTS: gradcheck(droipool, (x, rois), no_grads=[rois]) else: gradcheck(droipool, (x, rois), eps=1e-2, atol=1e-2)