# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import torch def test_pixel_group(): from mmcv.ops import pixel_group np_score = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0], [0, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0], [0, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0], [0, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]).astype(np.float32) np_mask = (np_score > 0.5) np_embedding = np.zeros((10, 10, 8)).astype(np.float32) np_embedding[:, :7] = 0.9 np_embedding[:, 7:] = 10.0 np_kernel_label = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 1, 0, 0, 0, 2, 0], [0, 0, 1, 1, 1, 0, 0, 0, 2, 0], [0, 0, 1, 1, 1, 0, 0, 0, 2, 0], [0, 0, 1, 1, 1, 0, 0, 0, 2, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]).astype(np.int32) np_kernel_contour = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 1, 0, 0, 0, 1, 0], [0, 0, 1, 0, 1, 0, 0, 0, 1, 0], [0, 0, 1, 0, 1, 0, 0, 0, 1, 0], [0, 0, 1, 1, 1, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]).astype(np.uint8) kernel_region_num = 3 distance_threshold = float(0.8) result = pixel_group(np_score, np_mask, np_embedding, np_kernel_label, np_kernel_contour, kernel_region_num, distance_threshold) gt_1 = [ 0.8999997973442078, 24.0, 1.0, 3.0, 2.0, 3.0, 3.0, 3.0, 4.0, 3.0, 5.0, 3.0, 6.0, 3.0, 1.0, 4.0, 2.0, 4.0, 3.0, 4.0, 4.0, 4.0, 5.0, 4.0, 6.0, 4.0, 1.0, 5.0, 2.0, 5.0, 3.0, 5.0, 4.0, 5.0, 5.0, 5.0, 6.0, 5.0, 1.0, 6.0, 2.0, 6.0, 3.0, 6.0, 4.0, 6.0, 5.0, 6.0, 6.0, 6.0 ] gt_2 = [ 0.9000000357627869, 8.0, 7.0, 3.0, 8.0, 3.0, 7.0, 4.0, 8.0, 4.0, 7.0, 5.0, 8.0, 5.0, 7.0, 6.0, 8.0, 6.0 ] assert np.allclose(result[0], [0, 0]) assert np.allclose(result[1], gt_1) assert np.allclose(result[2], gt_2) # test torch Tensor np_score_t = torch.from_numpy(np_score) np_mask_t = torch.from_numpy(np_mask) np_embedding_t = torch.from_numpy(np_embedding) np_kernel_label_t = torch.from_numpy(np_kernel_label) np_kernel_contour_t = torch.from_numpy(np_kernel_contour) result = pixel_group(np_score_t, np_mask_t, np_embedding_t, np_kernel_label_t, np_kernel_contour_t, kernel_region_num, distance_threshold) assert np.allclose(result[0], [0, 0]) assert np.allclose(result[1], gt_1) assert np.allclose(result[2], gt_2)