num_classes = 2 lr = 0.0001*1.414/10 param_dict_type = 'default' lr_backbone = 1e-05*1.414/10 lr_backbone_names = ['backbone.0'] lr_linear_proj_names = ['reference_points', 'sampling_offsets'] lr_linear_proj_mult = 0.1 ddetr_lr_param = False batch_size = 2 weight_decay = 0.0001 epochs = 200 lr_drop = 11 save_checkpoint_interval = 1 clip_max_norm = 0.1 onecyclelr = False multi_step_lr = True lr_drop_list = [30, 60] modelname = 'aios_smplx' frozen_weights = None backbone = 'resnet50' use_checkpoint = False dilation = False position_embedding = 'sine' pe_temperatureH = 20 pe_temperatureW = 20 return_interm_indices = [1, 2, 3] backbone_freeze_keywords = None enc_layers = 6 dec_layers = 6 pre_norm = False dim_feedforward = 2048 hidden_dim = 256 dropout = 0.0 nheads = 8 num_queries = 900 query_dim = 4 num_patterns = 0 random_refpoints_xy = False fix_refpoints_hw = -1 dec_layer_number = None num_feature_levels = 4 enc_n_points = 4 dec_n_points = 4 dln_xy_noise = 0.2 dln_hw_noise = 0.2 two_stage_type = 'standard' two_stage_bbox_embed_share = False two_stage_class_embed_share = False two_stage_learn_wh = False two_stage_default_hw = 0.05 two_stage_keep_all_tokens = False rm_detach = None num_select = 50 transformer_activation = 'relu' batch_norm_type = 'FrozenBatchNorm2d' masks = False losses = ["smpl_pose", "smpl_beta", "smpl_expr", "smpl_kp2d","smpl_kp3d","smpl_kp3d_ra",'labels', 'boxes', "keypoints"] # losses = ['labels', 'boxes', "keypoints"] aux_loss = True set_cost_class = 2.0 set_cost_bbox = 5.0 set_cost_giou = 2.0 set_cost_keypoints = 10.0 set_cost_kpvis = 0.0 set_cost_oks = 4.0 cls_loss_coef = 2.0 # keypoints_loss_coef = 10.0 smpl_pose_loss_root_coef = 10 * 0.1 smpl_pose_loss_body_coef = 1 * 0.1 smpl_pose_loss_lhand_coef = 1 * 0.1 smpl_pose_loss_rhand_coef = 1 * 0.1 smpl_pose_loss_jaw_coef = 1 * 0.1 smpl_beta_loss_coef = 0.01 smpl_expr_loss_coef = 0.01 # smpl_kp3d_loss_coef = 10 smpl_body_kp3d_loss_coef = 10.0 * 0.1 smpl_face_kp3d_loss_coef = 1.0 * 0.1 smpl_lhand_kp3d_loss_coef = 1 * 0.1 smpl_rhand_kp3d_loss_coef = 1 * 0.1 # kp3d ra smpl_body_kp3d_ra_loss_coef = 10 * 0.1 smpl_face_kp3d_ra_loss_coef = 1 * 0.1 smpl_lhand_kp3d_ra_loss_coef = 1 * 0.1 smpl_rhand_kp3d_ra_loss_coef = 1 * 0.1 # smpl_kp2d_ba_loss_coef = 1.0 smpl_body_kp2d_loss_coef = 10.0 * 0.1 smpl_lhand_kp2d_loss_coef = 5.0 * 0.1 smpl_rhand_kp2d_loss_coef = 5.0 * 0.1 smpl_face_kp2d_loss_coef = 1.0 * 0.1 smpl_body_kp2d_ba_loss_coef = 0 * 0.1 smpl_face_kp2d_ba_loss_coef = 0 * 0.1 smpl_lhand_kp2d_ba_loss_coef = 0 * 0.1 smpl_rhand_kp2d_ba_loss_coef = 0 * 0.1 bbox_loss_coef = 5.0 body_bbox_loss_coef = 5.0 lhand_bbox_loss_coef = 5.0 rhand_bbox_loss_coef = 5.0 face_bbox_loss_coef = 5.0 giou_loss_coef = 2.0 body_giou_loss_coef = 2.0 rhand_giou_loss_coef = 2.0 lhand_giou_loss_coef = 2.0 face_giou_loss_coef = 2.0 keypoints_loss_coef = 10.0 rhand_keypoints_loss_coef = 10.0 lhand_keypoints_loss_coef = 10.0 face_keypoints_loss_coef = 10.0 oks_loss_coef=4.0 rhand_oks_loss_coef = 0.5 lhand_oks_loss_coef = 0.5 face_oks_loss_coef = 4.0 enc_loss_coef = 1.0 interm_loss_coef = 1.0 no_interm_box_loss = False focal_alpha = 0.25 rm_self_attn_layers = None indices_idx_list = [1, 2, 3, 4, 5, 6, 7] decoder_sa_type = 'sa' matcher_type = 'HungarianMatcher' decoder_module_seq = ['sa', 'ca', 'ffn'] nms_iou_threshold = -1 dec_pred_bbox_embed_share = False dec_pred_class_embed_share = False dec_pred_pose_embed_share = False body_only = True # for dn use_dn = True dn_number = 100 dn_box_noise_scale = 0.4 dn_label_noise_ratio = 0.5 embed_init_tgt = False dn_label_coef = 0.3 dn_bbox_coef = 0.5 dn_batch_gt_fuse = False dn_attn_mask_type_list = ['match2dn', 'dn2dn', 'group2group'] dn_labelbook_size = 100 match_unstable_error = False # for ema use_ema = True ema_decay = 0.9997 ema_epoch = 0 cls_no_bias = False num_body_points = 17 # for coco num_hand_points = 6 # for coco num_face_points = 6 # for coco num_group = 100 num_box_decoder_layers = 2 num_hand_face_decoder_layers = 4 no_mmpose_keypoint_evaluator = True strong_aug = False body_model_test=\ dict( type='smplx', keypoint_src='smplx', num_expression_coeffs=10, num_betas=10, keypoint_dst='smplx_137', model_path='data/body_models/smplx', use_pca=False, use_face_contour=True) body_model_train = \ dict( type='smplx', keypoint_src='smplx', num_expression_coeffs=10, num_betas=10, keypoint_dst='smplx_137', model_path='data/body_models/smplx', use_pca=False, use_face_contour=True) # will be update in exp exp_name = 'output/exp52/dataset_debug' end_epoch = 150 train_batch_size = 32 scheduler = 'step' step_size = 20 gamma = 0.1 # continue continue_train = True pretrained_model_path = '../output/train_gta_synbody_ft_20230410_132110/model_dump/snapshot_2.pth.tar' # dataset setting # dataset_list = ['AGORA_MM','BEDLAM', 'COCO_NA'] # trainset_3d = ['AGORA_MM','BEDLAM', 'COCO_NA'] dataset_list = ['INFERENCE_demo'] trainset_3d = [] trainset_2d = [] trainset_partition = { } trainset_humandata = [] testset = 'INFERENCE_demo' train_sizes=[480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800] train_max_size=1333 test_sizes=[800] test_max_size=1333 no_aug=False # model use_cache = True ## UBody setting train_sample_interval = 10 test_sample_interval = 100 make_same_len = False ## input, output size input_body_shape = (256, 192) output_hm_shape = (16, 16, 12) input_hand_shape = (256, 256) output_hand_hm_shape = (16, 16, 16) output_face_hm_shape = (8, 8, 8) input_face_shape = (192, 192) focal = (5000, 5000) # virtual focal lengths princpt = (input_body_shape[1] / 2, input_body_shape[0] / 2 ) # virtual principal point position body_3d_size = 2 hand_3d_size = 0.3 face_3d_size = 0.3 camera_3d_size = 2.5 bbox_ratio = 1.2 ## directory output_dir, model_dir, vis_dir, log_dir, result_dir, code_dir = None, None, None, None, None, None agora_benchmark = 'na' # 'agora_model', 'test_only' # strategy data_strategy = 'balance' # 'balance' need to define total_data_len total_data_len = 'auto'