# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from mmcv.ops import rotated_feature_align from mmcv.utils import IS_CUDA_AVAILABLE @pytest.mark.skipif( not torch.cuda.is_available(), reason='requires CUDA support') @pytest.mark.parametrize('device', [ pytest.param( 'cuda', marks=pytest.mark.skipif( not IS_CUDA_AVAILABLE, reason='requires CUDA support')), pytest.param( 'cpu', marks=pytest.mark.skipif( torch.__version__ == 'parrots', reason='requires PyTorch support')) ]) def test_rotated_feature_align(device): feature = torch.tensor([[[[1.2924, -0.2172, -0.5222, 0.1172], [0.9144, 1.2248, 1.3115, -0.9690], [-0.8949, -1.1797, -0.9093, -0.3961], [-0.4586, 0.5062, -0.7947, -0.7397]], [[-1.0943, -0.7495, 1.3461, -1.1652], [0.2034, 0.6763, -1.2357, 0.5231], [-1.0062, 1.2592, 1.4225, -0.3951], [-0.1242, -1.6240, 0.1932, 2.7181]], [[-1.6271, -1.0276, 0.0578, -0.2997], [-0.9684, -1.6946, -1.3188, -1.1938], [-1.6744, -0.8917, -0.6556, 1.0073], [-0.1205, 0.3671, -0.3731, -0.5347]]], [[[0.7035, 0.2089, -0.1774, 3.4670], [-0.8505, -0.9278, 1.4714, 0.1644], [0.0898, 0.3531, -0.4007, 0.1927], [1.2569, -0.2636, -0.5223, 0.0616]], [[0.1760, -0.7639, -0.4600, -1.3260], [-0.9921, -0.2970, -0.8955, 1.0508], [1.3515, -0.1641, 1.9679, 1.1986], [-0.3616, 0.6287, 0.4933, 0.3360]], [[-0.5860, 0.2124, -0.8700, 2.4200], [-0.0551, -1.5103, -1.6779, 0.8399], [0.8431, 1.2414, -1.1243, -0.3887], [-2.1254, 0.6047, -0.3515, 0.7254]]]], device=device, requires_grad=True) bbox = torch.tensor( [[[[1.3080e+01, 1.2688e+01, 1.1214e+01, 9.3944e+01, -9.1905e-01], [3.8104e+01, 1.0134e+01, 1.4659e+02, 9.0306e+01, -9.8211e-01], [-5.3213e+01, 4.9508e+01, 5.1513e+01, 3.2055e+01, -3.1954e-01], [2.6974e+01, 2.5248e+01, 5.4495e+01, 3.1083e+00, -6.2127e-01]], [[-1.5604e+01, -5.1908e+01, 2.3998e+02, 1.5008e+01, -1.2546e+00], [3.1354e+01, -7.3635e+00, 6.7879e+01, 3.5081e+01, -3.3851e-01], [-5.3292e+00, 9.1946e+00, 1.2834e+01, 1.0485e+01, -1.3039e+00], [-2.3925e+01, 3.6623e+01, 3.9875e+01, 7.2009e+01, -6.5934e-01]], [[7.2114e+01, -2.3781e+01, 2.9106e+01, 8.4501e+01, -1.1340e+00], [2.6258e+01, -7.7034e+00, 1.7629e+02, 1.0615e+02, -1.2156e+00], [3.8057e+01, 4.6016e+01, 1.2965e+01, 6.9384e+00, -1.0855e+00], [2.4428e+01, -1.6189e+01, 2.0572e+02, 3.1622e+01, -1.5719e-01]], [[3.8226e+00, 2.9608e+01, 1.4457e+01, 6.8179e+01, -9.1997e-01], [2.5003e+01, -4.2490e+01, 9.6007e+01, 4.9086e+01, -1.4786e+00], [8.5983e+01, 5.4980e+01, 7.8080e+01, 1.0003e+02, -1.0926e+00], [9.9065e+00, 4.1457e+01, 5.9799e+00, 1.7973e+01, -5.6313e-01]]], [[[-1.8244e+01, 4.6309e+00, 5.3010e+01, 2.4310e+01, -7.0345e-01], [1.9419e+01, 3.6704e+01, 5.2390e+01, 5.4133e+01, -3.7730e-01], [5.6387e+01, 2.3752e+01, 9.0441e+00, 1.7792e+01, -1.5583e+00], [3.6303e+01, 1.6396e+01, 2.0283e+01, 1.9148e+01, -8.3419e-01]], [[3.2169e+01, 3.0521e+01, 2.6283e+01, 1.9680e+02, -3.0454e-01], [2.5788e+01, -3.2189e+01, 8.8882e+01, 1.0207e+02, -1.5328e+00], [8.4676e+00, -1.6668e+01, 2.4657e+01, 1.1275e+02, -4.0388e-01], [-1.0799e+01, 6.0422e+00, 9.5807e+00, 3.3677e+01, -3.5438e-01]], [[6.9363e+01, 1.0850e+01, 2.5968e+01, 2.2311e+01, -1.6408e-01], [2.8140e+00, 4.6843e+00, 3.1289e+00, 2.1480e+01, -6.7583e-01], [2.6661e+01, 4.5290e+01, 6.1679e+00, 3.0005e+01, -8.9806e-01], [5.0871e+00, 1.3234e+01, 9.2087e+01, 4.9622e+01, -2.8020e-01]], [[-1.2643e+01, 2.5176e+01, 5.0488e+01, 5.4246e+01, -4.4840e-01], [-3.4521e+01, 9.8435e-01, 5.2413e+01, 9.7996e+00, -8.4218e-01], [4.9829e+01, -1.0808e+01, 2.9848e+01, 7.3579e+01, -6.2672e-01], [8.0446e+01, 2.8064e+01, 4.5273e+01, 5.3809e+01, -1.2359e+00]]]], device=device, requires_grad=True) expected_output = torch.tensor([[[[1.1095, -0.2172, -0.5222, -0.6225], [0.9144, 0.7662, 1.0487, -0.9690], [-0.8949, -1.6384, -0.9093, -0.3961], [-0.8604, 0.5062, -0.7947, -0.7397]], [[-0.3961, -0.7495, 1.3461, 1.5528], [0.2034, 0.5522, -1.6722, 0.5231], [-1.0062, 1.1350, 1.4225, -0.3951], [-0.4826, -1.6240, 0.1932, 2.7181]], [[-2.6436, -1.0276, 0.0578, -0.8344], [-0.9684, -1.8151, -2.1843, -1.1938], [-1.6744, -1.0121, -0.6556, 1.0073], [-0.8474, 0.3671, -0.3731, -0.5347]]], [[[0.7035, 0.2089, -0.1774, 3.4670], [-0.8505, -0.9278, 1.4714, 0.1644], [0.0898, 0.3064, -0.4007, 0.5849], [1.2569, -0.2636, -0.5223, 0.0616]], [[0.1760, -0.7639, -0.4600, -1.3260], [-0.9921, -0.2970, -0.8955, 1.0508], [1.3515, -0.6125, 1.9679, 0.5550], [-0.3616, 0.6287, 0.4933, 0.3360]], [[-0.5860, 0.2124, -0.8700, 2.4200], [-0.0551, -1.5103, -1.6779, 0.8399], [0.8431, 0.8455, -1.1243, -1.5994], [-2.1254, 0.6047, -0.3515, 0.7254]]]], device=device) expected_grad = torch.tensor([ [[[1.0000, 1.8507, 1.1493, 1.5222], [1.0000, 1.1511, 1.2139, 1.4778], [1.0000, 1.2629, 1.3721, 1.0000], [3.0000, 1.0000, 1.0000, 2.0000]], [[1.0000, 1.8507, 1.1493, 1.5222], [1.0000, 1.1511, 1.2139, 1.4778], [1.0000, 1.2629, 1.3721, 1.0000], [3.0000, 1.0000, 1.0000, 2.0000]], [[1.0000, 1.8507, 1.1493, 1.5222], [1.0000, 1.1511, 1.2139, 1.4778], [1.0000, 1.2629, 1.3721, 1.0000], [3.0000, 1.0000, 1.0000, 2.0000]]], [[[1.2687, 1.5055, 1.2382, 1.0000], [1.1458, 1.4258, 1.4160, 1.0000], [1.0000, 1.0000, 1.0000, 1.0000], [1.0000, 1.0000, 1.0000, 1.0000]], [[1.2687, 1.5055, 1.2382, 1.0000], [1.1458, 1.4258, 1.4160, 1.0000], [1.0000, 1.0000, 1.0000, 1.0000], [1.0000, 1.0000, 1.0000, 1.0000]], [[1.2687, 1.5055, 1.2382, 1.0000], [1.1458, 1.4258, 1.4160, 1.0000], [1.0000, 1.0000, 1.0000, 1.0000], [1.0000, 1.0000, 1.0000, 1.0000]]] ], device=device) output = rotated_feature_align( feature, bbox, spatial_scale=1 / 8, points=1) output.backward(torch.ones_like(output)) assert torch.allclose(output, expected_output, 1e-2) assert torch.allclose(feature.grad, expected_grad, 1e-2)