# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import pytest import torch from mmcv.ops import RiRoIAlignRotated if torch.__version__ == 'parrots': from parrots.autograd import gradcheck _USING_PARROTS = True else: from torch.autograd import gradcheck _USING_PARROTS = False np_feature = np.array([[[[1, 2], [3, 4]], [[1, 2], [4, 3]], [[4, 3], [2, 1]], [[1, 2], [5, 6]], [[3, 4], [7, 8]], [[9, 10], [13, 14]], [[11, 12], [15, 16]], [[1, 1], [2, 2]]]]) np_rois = np.array([[0., 0.5, 0.5, 1., 1., np.pi / 3], [0., 1., 1., 3., 3., np.pi / 2]]) expect_output = np.array([[[[1.8425, 1.3516], [2.3151, 1.8241]], [[2.4779, 1.7416], [3.2173, 2.5632]], [[2.7149, 2.2638], [2.6540, 2.3673]], [[2.9461, 2.8638], [2.8028, 2.7205]], [[4.1943, 2.7214], [5.6119, 4.1391]], [[7.5276, 6.0547], [8.9453, 7.4724]], [[12.1943, 10.7214], [13.6119, 12.1391]], [[9.5489, 8.4237], [10.5763, 9.4511]]], [[[7.6562, 12.5625], [4.0000, 6.6250]], [[1.0000, 1.3125], [0.5000, 0.6562]], [[1.6562, 1.9375], [1.0000, 1.3125]], [[1.8438, 2.0547], [0.7500, 1.1562]], [[0.8438, 3.0625], [0.2500, 1.1875]], [[2.6562, 2.5625], [1.5000, 1.6250]], [[3.6562, 4.5625], [2.0000, 2.6250]], [[6.6562, 10.5625], [3.5000, 5.6250]]]]) expect_grad = np.array([[[[1.4727, 1.5586], [1.5586, 1.6602]], [[1.4727, 1.5586], [1.5586, 1.6602]], [[1.4727, 1.5586], [1.5586, 1.6602]], [[1.4727, 1.5586], [1.5586, 1.6602]], [[1.4727, 1.5586], [1.5586, 1.6602]], [[1.4727, 1.5586], [1.5586, 1.6602]], [[1.4727, 1.5586], [1.5586, 1.6602]], [[1.4727, 1.5586], [1.5586, 1.6602]]]]) pool_h = 2 pool_w = 2 spatial_scale = 1.0 num_samples = 2 sampling_ratio = 2 num_orientations = 8 clockwise = False @pytest.mark.skipif( not torch.cuda.is_available(), reason='requires CUDA support') def test_roialign_rotated_gradcheck(): x = torch.tensor( np_feature, dtype=torch.float, device='cuda', requires_grad=True) rois = torch.tensor(np_rois, dtype=torch.float, device='cuda') froipool = RiRoIAlignRotated((pool_h, pool_w), spatial_scale, num_samples, num_orientations, clockwise) if _USING_PARROTS: gradcheck( froipool, (x, rois), no_grads=[rois], delta=1e-3, pt_atol=1e-3) else: gradcheck(froipool, (x, rois), eps=1e-3, atol=1e-3) @pytest.mark.skipif( not torch.cuda.is_available(), reason='requires CUDA support') def test_roialign_rotated_allclose(): x = torch.tensor( np_feature, dtype=torch.float, device='cuda', requires_grad=True) rois = torch.tensor(np_rois, dtype=torch.float, device='cuda') froipool = RiRoIAlignRotated((pool_h, pool_w), spatial_scale, num_samples, num_orientations, clockwise) output = froipool(x, rois) output.backward(torch.ones_like(output)) assert np.allclose( output.data.type(torch.float).cpu().numpy(), expect_output, atol=1e-3) assert np.allclose( x.grad.data.type(torch.float).cpu().numpy(), expect_grad, atol=1e-3)