# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import pytest import torch from mmcv.utils import IS_CUDA_AVAILABLE _USING_PARROTS = True try: from parrots.autograd import gradcheck except ImportError: from torch.autograd import gradcheck _USING_PARROTS = False inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0., 0., 1., 1.]]), ([[[[1., 2.], [3., 4.]], [[4., 3.], [2., 1.]]]], [[0., 0., 0., 1., 1.]]), ([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.], [11., 12., 15., 16.]]]], [[0., 0., 0., 3., 3.]])] outputs = [ ([[[[1.75, 2.25], [2.75, 3.25]]]], [[[[1., 1.], [1., 1.]]]], [[0., 2., 4., 2., 4.]]), ([[[[1.75, 2.25], [2.75, 3.25]], [[3.25, 2.75], [2.25, 1.75]]]], [[[[1., 1.], [1., 1.]], [[1., 1.], [1., 1.]]]], [[0., 0., 0., 0., 0.]]), ([[[[3.75, 6.91666651], [10.08333302, 13.25]]]], [[[[0.11111111, 0.22222224, 0.22222222, 0.11111111], [0.22222224, 0.444444448, 0.44444448, 0.22222224], [0.22222224, 0.44444448, 0.44444448, 0.22222224], [0.11111111, 0.22222224, 0.22222224, 0.11111111]]]], [[0.0, 3.33333302, 6.66666603, 3.33333349, 6.66666698]]) ] class TestPrRoiPool: @pytest.mark.parametrize('device', [ pytest.param( 'cuda', marks=pytest.mark.skipif( not IS_CUDA_AVAILABLE, reason='requires CUDA support')) ]) def test_roipool_gradcheck(self, device): from mmcv.ops import PrRoIPool pool_h = 2 pool_w = 2 spatial_scale = 1.0 for case in inputs: np_input = np.array(case[0], dtype=np.float32) np_rois = np.array(case[1], dtype=np.float32) x = torch.tensor(np_input, device=device, requires_grad=True) rois = torch.tensor(np_rois, device=device) froipool = PrRoIPool((pool_h, pool_w), spatial_scale) if _USING_PARROTS: pass # gradcheck(froipool, (x, rois), no_grads=[rois]) else: gradcheck(froipool, (x, rois), eps=1e-2, atol=1e-2) def _test_roipool_allclose(self, device, dtype=torch.float): from mmcv.ops import prroi_pool pool_h = 2 pool_w = 2 spatial_scale = 1.0 for case, output in zip(inputs, outputs): np_input = np.array(case[0], dtype=np.float32) np_rois = np.array(case[1], dtype=np.float32) np_output = np.array(output[0], dtype=np.float32) np_input_grad = np.array(output[1], dtype=np.float32) np_rois_grad = np.array(output[2], dtype=np.float32) x = torch.tensor( np_input, dtype=dtype, device=device, requires_grad=True) rois = torch.tensor( np_rois, dtype=dtype, device=device, requires_grad=True) output = prroi_pool(x, rois, (pool_h, pool_w), spatial_scale) output.backward(torch.ones_like(output)) assert np.allclose(output.data.cpu().numpy(), np_output, 1e-3) assert np.allclose(x.grad.data.cpu().numpy(), np_input_grad, 1e-3) assert np.allclose(rois.grad.data.cpu().numpy(), np_rois_grad, 1e-3) @pytest.mark.parametrize('device', [ pytest.param( 'cuda', marks=pytest.mark.skipif( not IS_CUDA_AVAILABLE, reason='requires CUDA support')) ]) def test_roipool_allclose_float(self, device): self._test_roipool_allclose(device, dtype=torch.float)