# Copyright (c) OpenMMLab. All rights reserved. import tempfile import warnings from mmcv.runner import DistEvalHook as BaseDistEvalHook from mmcv.runner import EvalHook as BaseEvalHook MMHUMAN3D_GREATER_KEYS = ['3dpck', 'pa-3dpck', '3dauc', 'pa-3dauc'] MMHUMAN3D_LESS_KEYS = ['mpjpe', 'pa-mpjpe', 'pve'] class EvalHook(BaseEvalHook): def __init__(self, dataloader, start=None, interval=1, by_epoch=True, save_best=None, rule=None, test_fn=None, greater_keys=MMHUMAN3D_GREATER_KEYS, less_keys=MMHUMAN3D_LESS_KEYS, **eval_kwargs): if test_fn is None: from detrsmpl.apis import single_gpu_test test_fn = single_gpu_test # remove "gpu_collect" from eval_kwargs if 'gpu_collect' in eval_kwargs: warnings.warn( '"gpu_collect" will be deprecated in EvalHook.' 'Please remove it from the config.', DeprecationWarning) _ = eval_kwargs.pop('gpu_collect') # update "save_best" according to "key_indicator" and remove the # latter from eval_kwargs if 'key_indicator' in eval_kwargs or isinstance(save_best, bool): warnings.warn( '"key_indicator" will be deprecated in EvalHook.' 'Please use "save_best" to specify the metric key,' 'e.g., save_best="pa-mpjpe".', DeprecationWarning) key_indicator = eval_kwargs.pop('key_indicator', None) if save_best is True and key_indicator is None: raise ValueError('key_indicator should not be None, when ' 'save_best is set to True.') save_best = key_indicator super().__init__(dataloader, start, interval, by_epoch, save_best, rule, test_fn, greater_keys, less_keys, **eval_kwargs) def evaluate(self, runner, results): with tempfile.TemporaryDirectory() as tmp_dir: eval_res = self.dataloader.dataset.evaluate(results, res_folder=tmp_dir, logger=runner.logger, **self.eval_kwargs) for name, val in eval_res.items(): runner.log_buffer.output[name] = val runner.log_buffer.ready = True if self.save_best is not None: if self.key_indicator == 'auto': self._init_rule(self.rule, list(eval_res.keys())[0]) return eval_res[self.key_indicator] return None class DistEvalHook(BaseDistEvalHook): def __init__(self, dataloader, start=None, interval=1, by_epoch=True, save_best=None, rule=None, test_fn=None, greater_keys=MMHUMAN3D_GREATER_KEYS, less_keys=MMHUMAN3D_LESS_KEYS, broadcast_bn_buffer=True, tmpdir=None, gpu_collect=False, **eval_kwargs): if test_fn is None: from detrsmpl.apis import multi_gpu_test test_fn = multi_gpu_test # update "save_best" according to "key_indicator" and remove the # latter from eval_kwargs if 'key_indicator' in eval_kwargs or isinstance(save_best, bool): warnings.warn( '"key_indicator" will be deprecated in EvalHook.' 'Please use "save_best" to specify the metric key,' 'e.g., save_best="pa-mpjpe".', DeprecationWarning) key_indicator = eval_kwargs.pop('key_indicator', None) if save_best is True and key_indicator is None: raise ValueError('key_indicator should not be None, when ' 'save_best is set to True.') save_best = key_indicator super().__init__(dataloader, start, interval, by_epoch, save_best, rule, test_fn, greater_keys, less_keys, broadcast_bn_buffer, tmpdir, gpu_collect, **eval_kwargs) def evaluate(self, runner, results): """Evaluate the results. Args: runner (:obj:`mmcv.Runner`): The underlined training runner. results (list): Output results. """ with tempfile.TemporaryDirectory() as tmp_dir: eval_res = self.dataloader.dataset.evaluate(results, res_folder=tmp_dir, logger=runner.logger, **self.eval_kwargs) for name, val in eval_res.items(): runner.log_buffer.output[name] = val runner.log_buffer.ready = True if self.save_best is not None: if self.key_indicator == 'auto': # infer from eval_results self._init_rule(self.rule, list(eval_res.keys())[0]) return eval_res[self.key_indicator] return None