AiOS / pytorch3d /setup.py
ttxskk
update
d7e58f0
#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import glob
import os
import runpy
import warnings
from typing import List, Optional
import torch
from setuptools import find_packages, setup
from torch.utils.cpp_extension import CUDA_HOME, CppExtension, CUDAExtension
def get_existing_ccbin(nvcc_args: List[str]) -> Optional[str]:
"""
Given a list of nvcc arguments, return the compiler if specified.
Note from CUDA doc: Single value options and list options must have
arguments, which must follow the name of the option itself by either
one of more spaces or an equals character.
"""
last_arg = None
for arg in reversed(nvcc_args):
if arg == "-ccbin":
return last_arg
if arg.startswith("-ccbin="):
return arg[7:]
last_arg = arg
return None
def get_extensions():
this_dir = os.path.dirname(os.path.abspath(__file__))
extensions_dir = os.path.join(this_dir, "pytorch3d", "csrc")
sources = glob.glob(os.path.join(extensions_dir, "**", "*.cpp"), recursive=True)
source_cuda = glob.glob(os.path.join(extensions_dir, "**", "*.cu"), recursive=True)
extension = CppExtension
extra_compile_args = {"cxx": ["-std=c++17"]}
define_macros = []
include_dirs = [extensions_dir]
force_cuda = os.getenv("FORCE_CUDA", "0") == "1"
if (torch.cuda.is_available() and CUDA_HOME is not None) or force_cuda:
extension = CUDAExtension
sources += source_cuda
define_macros += [("WITH_CUDA", None)]
# Thrust is only used for its tuple objects.
# With CUDA 11.0 we can't use the cudatoolkit's version of cub.
# We take the risk that CUB and Thrust are incompatible, because
# we aren't using parts of Thrust which actually use CUB.
define_macros += [("THRUST_IGNORE_CUB_VERSION_CHECK", None)]
cub_home = os.environ.get("CUB_HOME", None)
nvcc_args = [
"-std=c++17",
"-DCUDA_HAS_FP16=1",
"-D__CUDA_NO_HALF_OPERATORS__",
"-D__CUDA_NO_HALF_CONVERSIONS__",
"-D__CUDA_NO_HALF2_OPERATORS__",
]
if cub_home is None:
prefix = os.environ.get("CONDA_PREFIX", None)
if prefix is not None and os.path.isdir(prefix + "/include/cub"):
cub_home = prefix + "/include"
if cub_home is None:
warnings.warn(
"The environment variable `CUB_HOME` was not found. "
"NVIDIA CUB is required for compilation and can be downloaded "
"from `https://github.com/NVIDIA/cub/releases`. You can unpack "
"it to a location of your choice and set the environment variable "
"`CUB_HOME` to the folder containing the `CMakeListst.txt` file."
)
else:
include_dirs.append(os.path.realpath(cub_home).replace("\\ ", " "))
nvcc_flags_env = os.getenv("NVCC_FLAGS", "")
if nvcc_flags_env != "":
nvcc_args.extend(nvcc_flags_env.split(" "))
# This is needed for pytorch 1.6 and earlier. See e.g.
# https://github.com/facebookresearch/pytorch3d/issues/436
# It is harmless after https://github.com/pytorch/pytorch/pull/47404 .
# But it can be problematic in torch 1.7.0 and 1.7.1
if torch.__version__[:4] != "1.7.":
CC = os.environ.get("CC", None)
if CC is not None:
existing_CC = get_existing_ccbin(nvcc_args)
if existing_CC is None:
CC_arg = "-ccbin={}".format(CC)
nvcc_args.append(CC_arg)
elif existing_CC != CC:
msg = f"Inconsistent ccbins: {CC} and {existing_CC}"
raise ValueError(msg)
extra_compile_args["nvcc"] = nvcc_args
sources = [os.path.join(extensions_dir, s) for s in sources]
ext_modules = [
extension(
"pytorch3d._C",
sources,
include_dirs=include_dirs,
define_macros=define_macros,
extra_compile_args=extra_compile_args,
)
]
return ext_modules
# Retrieve __version__ from the package.
__version__ = runpy.run_path("pytorch3d/__init__.py")["__version__"]
if os.getenv("PYTORCH3D_NO_NINJA", "0") == "1":
class BuildExtension(torch.utils.cpp_extension.BuildExtension):
def __init__(self, *args, **kwargs):
super().__init__(use_ninja=False, *args, **kwargs)
else:
BuildExtension = torch.utils.cpp_extension.BuildExtension
setup(
name="pytorch3d",
version=__version__,
author="FAIR",
url="https://github.com/facebookresearch/pytorch3d",
description="PyTorch3D is FAIR's library of reusable components "
"for deep Learning with 3D data.",
packages=find_packages(
exclude=("configs", "tests", "tests.*", "docs.*", "projects.*")
),
install_requires=["fvcore", "iopath"],
extras_require={
"all": ["matplotlib", "tqdm>4.29.0", "imageio", "ipywidgets"],
"dev": ["flake8", "isort", "black==19.3b0"],
},
ext_modules=get_extensions(),
cmdclass={"build_ext": BuildExtension},
package_data={
"": ["*.json"],
},
)