AiOS / pytorch3d /packaging /pkg_helpers.bash
ttxskk
update
d7e58f0
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
# shellcheck shell=bash
# A set of useful bash functions for common functionality we need to do in
# many build scripts
# Setup CUDA environment variables, based on CU_VERSION
#
# Inputs:
# CU_VERSION (cu92, cu100, cu101, cu102)
# NO_CUDA_PACKAGE (bool)
# BUILD_TYPE (conda, wheel)
#
# Outputs:
# VERSION_SUFFIX (e.g., "")
# PYTORCH_VERSION_SUFFIX (e.g., +cpu)
# WHEEL_DIR (e.g., cu100/)
# CUDA_HOME (e.g., /usr/local/cuda-9.2, respected by torch.utils.cpp_extension)
# FORCE_CUDA (respected by pytorch3d setup.py)
# NVCC_FLAGS (respected by pytorch3d setup.py)
#
# Precondition: CUDA versions are installed in their conventional locations in
# /usr/local/cuda-*
#
# NOTE: Why VERSION_SUFFIX versus PYTORCH_VERSION_SUFFIX? If you're building
# a package with CUDA on a platform we support CUDA on, VERSION_SUFFIX ==
# PYTORCH_VERSION_SUFFIX and everyone is happy. However, if you are building a
# package with only CPU bits (e.g., torchaudio), then VERSION_SUFFIX is always
# empty, but PYTORCH_VERSION_SUFFIX is +cpu (because that's how you get a CPU
# version of a Python package. But that doesn't apply if you're on OS X,
# since the default CU_VERSION on OS X is cpu.
setup_cuda() {
# First, compute version suffixes. By default, assume no version suffixes
export VERSION_SUFFIX=""
export PYTORCH_VERSION_SUFFIX=""
export WHEEL_DIR=""
# Wheel builds need suffixes (but not if they're on OS X, which never has suffix)
if [[ "$BUILD_TYPE" == "wheel" ]] && [[ "$(uname)" != Darwin ]]; then
# The default CUDA has no suffix
if [[ "$CU_VERSION" != "cu102" ]]; then
export PYTORCH_VERSION_SUFFIX="+$CU_VERSION"
fi
# Match the suffix scheme of pytorch, unless this package does not have
# CUDA builds (in which case, use default)
if [[ -z "$NO_CUDA_PACKAGE" ]]; then
export VERSION_SUFFIX="$PYTORCH_VERSION_SUFFIX"
export WHEEL_DIR="$CU_VERSION/"
fi
fi
# Now work out the CUDA settings
case "$CU_VERSION" in
cu113)
if [[ "$OSTYPE" == "msys" ]]; then
export CUDA_HOME="C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v11.3"
else
export CUDA_HOME=/usr/local/cuda-11.3/
fi
export FORCE_CUDA=1
# Hard-coding gencode flags is temporary situation until
# https://github.com/pytorch/pytorch/pull/23408 lands
export NVCC_FLAGS="-gencode=arch=compute_35,code=sm_35 -gencode=arch=compute_50,code=sm_50 -gencode=arch=compute_60,code=sm_60 -gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_75,code=sm_75 -gencode=arch=compute_80,code=sm_80 -gencode=arch=compute_86,code=sm_86 -gencode=arch=compute_50,code=compute_50"
;;
cu112)
if [[ "$OSTYPE" == "msys" ]]; then
export CUDA_HOME="C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v11.2"
else
export CUDA_HOME=/usr/local/cuda-11.2/
fi
export FORCE_CUDA=1
# Hard-coding gencode flags is temporary situation until
# https://github.com/pytorch/pytorch/pull/23408 lands
export NVCC_FLAGS="-gencode=arch=compute_35,code=sm_35 -gencode=arch=compute_50,code=sm_50 -gencode=arch=compute_60,code=sm_60 -gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_75,code=sm_75 -gencode=arch=compute_80,code=sm_80 -gencode=arch=compute_86,code=sm_86 -gencode=arch=compute_50,code=compute_50"
;;
cu111)
if [[ "$OSTYPE" == "msys" ]]; then
export CUDA_HOME="C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v11.1"
else
export CUDA_HOME=/usr/local/cuda-11.1/
fi
export FORCE_CUDA=1
# Hard-coding gencode flags is temporary situation until
# https://github.com/pytorch/pytorch/pull/23408 lands
export NVCC_FLAGS="-gencode=arch=compute_35,code=sm_35 -gencode=arch=compute_50,code=sm_50 -gencode=arch=compute_60,code=sm_60 -gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_75,code=sm_75 -gencode=arch=compute_80,code=sm_80 -gencode=arch=compute_86,code=sm_86 -gencode=arch=compute_50,code=compute_50"
;;
cu110)
if [[ "$OSTYPE" == "msys" ]]; then
export CUDA_HOME="C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v11.0"
else
export CUDA_HOME=/usr/local/cuda-11.0/
fi
export FORCE_CUDA=1
# Hard-coding gencode flags is temporary situation until
# https://github.com/pytorch/pytorch/pull/23408 lands
export NVCC_FLAGS="-gencode=arch=compute_35,code=sm_35 -gencode=arch=compute_50,code=sm_50 -gencode=arch=compute_60,code=sm_60 -gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_75,code=sm_75 -gencode=arch=compute_80,code=sm_80 -gencode=arch=compute_50,code=compute_50"
;;
cu102)
if [[ "$OSTYPE" == "msys" ]]; then
export CUDA_HOME="C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v10.2"
else
export CUDA_HOME=/usr/local/cuda-10.2/
fi
export FORCE_CUDA=1
# Hard-coding gencode flags is temporary situation until
# https://github.com/pytorch/pytorch/pull/23408 lands
export NVCC_FLAGS="-gencode=arch=compute_35,code=sm_35 -gencode=arch=compute_50,code=sm_50 -gencode=arch=compute_60,code=sm_60 -gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_75,code=sm_75 -gencode=arch=compute_50,code=compute_50"
;;
cu101)
if [[ "$OSTYPE" == "msys" ]]; then
export CUDA_HOME="C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v10.1"
else
export CUDA_HOME=/usr/local/cuda-10.1/
fi
export FORCE_CUDA=1
# Hard-coding gencode flags is temporary situation until
# https://github.com/pytorch/pytorch/pull/23408 lands
export NVCC_FLAGS="-gencode=arch=compute_35,code=sm_35 -gencode=arch=compute_50,code=sm_50 -gencode=arch=compute_60,code=sm_60 -gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_75,code=sm_75 -gencode=arch=compute_50,code=compute_50"
;;
cu100)
if [[ "$OSTYPE" == "msys" ]]; then
export CUDA_HOME="C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v10.0"
else
export CUDA_HOME=/usr/local/cuda-10.0/
fi
export FORCE_CUDA=1
# Hard-coding gencode flags is temporary situation until
# https://github.com/pytorch/pytorch/pull/23408 lands
export NVCC_FLAGS="-gencode=arch=compute_35,code=sm_35 -gencode=arch=compute_50,code=sm_50 -gencode=arch=compute_60,code=sm_60 -gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_75,code=sm_75 -gencode=arch=compute_50,code=compute_50"
;;
cu92)
if [[ "$OSTYPE" == "msys" ]]; then
export CUDA_HOME="C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v9.2"
else
export CUDA_HOME=/usr/local/cuda-9.2/
fi
export FORCE_CUDA=1
export NVCC_FLAGS="-gencode=arch=compute_35,code=sm_35 -gencode=arch=compute_50,code=sm_50 -gencode=arch=compute_60,code=sm_60 -gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_50,code=compute_50"
;;
cpu)
;;
*)
echo "Unrecognized CU_VERSION=$CU_VERSION"
exit 1
;;
esac
}
# Populate build version if necessary, and add version suffix
#
# Inputs:
# BUILD_VERSION (e.g., 0.2.0 or empty)
# VERSION_SUFFIX (e.g., +cpu)
#
# Outputs:
# BUILD_VERSION (e.g., 0.2.0.dev20190807+cpu)
#
# Fill BUILD_VERSION if it doesn't exist already with a nightly string
# Usage: setup_build_version 0.2.0
setup_build_version() {
if [[ -z "$BUILD_VERSION" ]]; then
export BUILD_VERSION="$1.dev$(date "+%Y%m%d")$VERSION_SUFFIX"
else
export BUILD_VERSION="$BUILD_VERSION$VERSION_SUFFIX"
fi
}
# Set some useful variables for OS X, if applicable
setup_macos() {
if [[ "$(uname)" == Darwin ]]; then
export MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++
fi
}
# Top-level entry point for things every package will need to do
#
# Usage: setup_env 0.2.0
setup_env() {
setup_cuda
setup_build_version "$1"
setup_macos
}
# Function to retry functions that sometimes timeout or have flaky failures
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
# Inputs:
# PYTHON_VERSION (2.7, 3.5, 3.6, 3.7)
# UNICODE_ABI (bool)
#
# Outputs:
# PATH modified to put correct Python version in PATH
#
# Precondition: If Linux, you are in a soumith/manylinux-cuda* Docker image
setup_wheel_python() {
if [[ "$(uname)" == Darwin ]]; then
eval "$(conda shell.bash hook)"
conda env remove -n "env$PYTHON_VERSION" || true
conda create -yn "env$PYTHON_VERSION" python="$PYTHON_VERSION"
conda activate "env$PYTHON_VERSION"
else
case "$PYTHON_VERSION" in
2.7)
if [[ -n "$UNICODE_ABI" ]]; then
python_abi=cp27-cp27mu
else
python_abi=cp27-cp27m
fi
;;
3.5) python_abi=cp35-cp35m ;;
3.6) python_abi=cp36-cp36m ;;
3.7) python_abi=cp37-cp37m ;;
3.8) python_abi=cp38-cp38 ;;
*)
echo "Unrecognized PYTHON_VERSION=$PYTHON_VERSION"
exit 1
;;
esac
export PATH="/opt/python/$python_abi/bin:$PATH"
fi
}
# Install with pip a bit more robustly than the default
pip_install() {
retry pip install --progress-bar off "$@"
}
# Install torch with pip, respecting PYTORCH_VERSION, and record the installed
# version into PYTORCH_VERSION, if applicable
setup_pip_pytorch_version() {
if [[ -z "$PYTORCH_VERSION" ]]; then
# Install latest prerelease version of torch, per our nightlies, consistent
# with the requested cuda version
pip_install --pre torch -f "https://download.pytorch.org/whl/nightly/${WHEEL_DIR}torch_nightly.html"
if [[ "$CUDA_VERSION" == "cpu" ]]; then
# CUDA and CPU are ABI compatible on the CPU-only parts, so strip
# in this case
export PYTORCH_VERSION="$(pip show torch | grep ^Version: | sed 's/Version: *//' | sed 's/+.\+//')"
else
export PYTORCH_VERSION="$(pip show torch | grep ^Version: | sed 's/Version: *//')"
fi
else
pip_install "torch==$PYTORCH_VERSION$CUDA_SUFFIX" \
-f https://download.pytorch.org/whl/torch_stable.html \
-f https://download.pytorch.org/whl/nightly/torch_nightly.html
fi
}
# Fill PYTORCH_VERSION with the latest conda nightly version, and
# CONDA_CHANNEL_FLAGS with appropriate flags to retrieve these versions
#
# You MUST have populated CUDA_SUFFIX before hand.
setup_conda_pytorch_constraint() {
if [[ -z "$PYTORCH_VERSION" ]]; then
export CONDA_CHANNEL_FLAGS="-c pytorch-nightly"
export PYTORCH_VERSION="$(conda search --json 'pytorch[channel=pytorch-nightly]' | \
python -c "import os, sys, json, re; cuver = os.environ.get('CU_VERSION'); \
cuver_1 = cuver.replace('cu', 'cuda') if cuver != 'cpu' else cuver; \
cuver_2 = (cuver[:-1] + '.' + cuver[-1]).replace('cu', 'cuda') if cuver != 'cpu' else cuver; \
print(re.sub(r'\\+.*$', '', \
[x['version'] for x in json.load(sys.stdin)['pytorch'] \
if (x['platform'] == 'darwin' or cuver_1 in x['fn'] or cuver_2 in x['fn']) \
and 'py' + os.environ['PYTHON_VERSION'] in x['fn']][-1]))")"
if [[ -z "$PYTORCH_VERSION" ]]; then
echo "PyTorch version auto detection failed"
echo "No package found for CU_VERSION=$CU_VERSION and PYTHON_VERSION=$PYTHON_VERSION"
exit 1
fi
else
export CONDA_CHANNEL_FLAGS="-c pytorch"
fi
if [[ "$CU_VERSION" == cpu ]]; then
export CONDA_PYTORCH_BUILD_CONSTRAINT="- pytorch==$PYTORCH_VERSION${PYTORCH_VERSION_SUFFIX}"
export CONDA_PYTORCH_CONSTRAINT="- pytorch==$PYTORCH_VERSION"
else
export CONDA_PYTORCH_BUILD_CONSTRAINT="- pytorch==${PYTORCH_VERSION}${PYTORCH_VERSION_SUFFIX}"
export CONDA_PYTORCH_CONSTRAINT="- pytorch==${PYTORCH_VERSION}${PYTORCH_VERSION_SUFFIX}"
fi
export PYTORCH_VERSION_NODOT=${PYTORCH_VERSION//./}
}
# Translate CUDA_VERSION into CUDA_CUDATOOLKIT_CONSTRAINT
setup_conda_cudatoolkit_constraint() {
export CONDA_CPUONLY_FEATURE=""
export CONDA_CUB_CONSTRAINT=""
if [[ "$(uname)" == Darwin ]]; then
export CONDA_CUDATOOLKIT_CONSTRAINT=""
else
case "$CU_VERSION" in
cu113)
export CONDA_CUDATOOLKIT_CONSTRAINT="- cudatoolkit >=11.3,<11.4 # [not osx]"
;;
cu112)
export CONDA_CUDATOOLKIT_CONSTRAINT="- cudatoolkit >=11.2,<11.3 # [not osx]"
;;
cu111)
export CONDA_CUDATOOLKIT_CONSTRAINT="- cudatoolkit >=11.1,<11.2 # [not osx]"
;;
cu110)
export CONDA_CUDATOOLKIT_CONSTRAINT="- cudatoolkit >=11.0,<11.1 # [not osx]"
# Even though cudatoolkit 11.0 provides CUB we need our own, to control the
# version, because the built-in 1.9.9 in the cudatoolkit causes problems.
export CONDA_CUB_CONSTRAINT="- nvidiacub"
;;
cu102)
export CONDA_CUDATOOLKIT_CONSTRAINT="- cudatoolkit >=10.2,<10.3 # [not osx]"
export CONDA_CUB_CONSTRAINT="- nvidiacub"
;;
cu101)
export CONDA_CUDATOOLKIT_CONSTRAINT="- cudatoolkit >=10.1,<10.2 # [not osx]"
export CONDA_CUB_CONSTRAINT="- nvidiacub"
;;
cu100)
export CONDA_CUDATOOLKIT_CONSTRAINT="- cudatoolkit >=10.0,<10.1 # [not osx]"
export CONDA_CUB_CONSTRAINT="- nvidiacub"
;;
cu92)
export CONDA_CUDATOOLKIT_CONSTRAINT="- cudatoolkit >=9.2,<9.3 # [not osx]"
export CONDA_CUB_CONSTRAINT="- nvidiacub"
;;
cpu)
export CONDA_CUDATOOLKIT_CONSTRAINT=""
export CONDA_CPUONLY_FEATURE="- cpuonly"
;;
*)
echo "Unrecognized CU_VERSION=$CU_VERSION"
exit 1
;;
esac
fi
}
# Build the proper compiler package before building the final package
setup_visual_studio_constraint() {
if [[ "$OSTYPE" == "msys" ]]; then
export VSTOOLCHAIN_PACKAGE=vs2019
export VSDEVCMD_ARGS=''
# shellcheck disable=SC2086
conda build $CONDA_CHANNEL_FLAGS --no-anaconda-upload packaging/$VSTOOLCHAIN_PACKAGE
cp packaging/$VSTOOLCHAIN_PACKAGE/conda_build_config.yaml packaging/pytorch3d/conda_build_config.yaml
fi
}
download_nvidiacub_if_needed() {
case "$CU_VERSION" in
cu110|cu102|cu101|cu100|cu92)
echo "Downloading cub"
wget --no-verbose https://github.com/NVIDIA/cub/archive/1.10.0.tar.gz
tar xzf 1.10.0.tar.gz
CUB_HOME=$(realpath ./cub-1.10.0)
export CUB_HOME
echo "CUB_HOME is now $CUB_HOME"
;;
esac
# We don't need CUB for a cpu build or if cuda is 11.1 or higher
}