Spaces:
Sleeping
Sleeping
import numpy as np | |
import torch | |
from torch.nn import functional as F | |
import torchgeometry as tgm | |
def batch_rodrigues(theta): | |
"""Convert axis-angle representation to rotation matrix. | |
Args: | |
theta: size = [B, 3] | |
Returns: | |
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] | |
""" | |
l1norm = torch.norm(theta + 1e-8, p=2, dim=1) | |
angle = torch.unsqueeze(l1norm, -1) | |
normalized = torch.div(theta, angle) | |
angle = angle * 0.5 | |
v_cos = torch.cos(angle) | |
v_sin = torch.sin(angle) | |
quat = torch.cat([v_cos, v_sin * normalized], dim=1) | |
return quat_to_rotmat(quat) | |
def quat_to_rotmat(quat): | |
"""Convert quaternion coefficients to rotation matrix. | |
Args: | |
quat: size = [B, 4] 4 <===>(w, x, y, z) | |
Returns: | |
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] | |
""" | |
norm_quat = quat | |
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True) | |
w = norm_quat[:, 0] | |
x = norm_quat[:, 1] | |
y = norm_quat[:, 2] | |
z = norm_quat[:, 3] | |
B = quat.size(0) | |
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) | |
wx, wy, wz = w * x, w * y, w * z | |
xy, xz, yz = x * y, x * z, y * z | |
rotMat = torch.stack([ | |
w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy, | |
w2 - x2 + y2 - z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz, | |
w2 - x2 - y2 + z2 | |
], | |
dim=1).view(B, 3, 3) | |
return rotMat | |
def rot6d_to_rotmat(x): | |
"""Convert 6D rotation representation to 3x3 rotation matrix. | |
Based on Zhou et al., "On the Continuity of Rotation | |
Representations in Neural Networks", CVPR 2019 | |
Input: | |
(B,6) Batch of 6-D rotation representations | |
Output: | |
(B,3,3) Batch of corresponding rotation matrices | |
""" | |
if isinstance(x, torch.Tensor): | |
x = x.reshape(-1, 3, 2) | |
elif isinstance(x, np.ndarray): | |
x = x.view(-1, 3, 2) | |
a1 = x[:, :, 0] | |
a2 = x[:, :, 1] | |
b1 = F.normalize(a1) | |
b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1) | |
b3 = torch.cross(b1, b2) | |
return torch.stack((b1, b2, b3), dim=-1) | |
def rot6d_to_axis_angle(x): | |
batch_size = x.shape[0] | |
x = x.view(-1, 3, 2) | |
a1 = x[:, :, 0] | |
a2 = x[:, :, 1] | |
b1 = F.normalize(a1) | |
b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1) | |
b3 = torch.cross(b1, b2) | |
rot_mat = torch.stack((b1, b2, b3), dim=-1) # 3x3 rotation matrix | |
rot_mat = torch.cat([rot_mat, torch.zeros((batch_size, 3, 1)).cuda().float()], 2) # 3x4 rotation matrix | |
axis_angle = tgm.rotation_matrix_to_angle_axis(rot_mat).reshape(-1, 3) # axis-angle | |
axis_angle[torch.isnan(axis_angle)] = 0.0 | |
return axis_angle | |
def rotation_matrix_to_angle_axis(rotation_matrix): | |
""" | |
This function is borrowed from https://github.com/kornia/kornia | |
Convert 3x4 rotation matrix to Rodrigues vector | |
Args: | |
rotation_matrix (Tensor): rotation matrix. | |
Returns: | |
Tensor: Rodrigues vector transformation. | |
Shape: | |
- Input: :math:`(N, 3, 4)` | |
- Output: :math:`(N, 3)` | |
Example: | |
>>> input = torch.rand(2, 3, 4) # Nx3x4 | |
>>> output = tgm.rotation_matrix_to_angle_axis(input) # Nx3 | |
""" | |
if rotation_matrix.shape[1:] == (3, 3): | |
rot_mat = rotation_matrix.reshape(-1, 3, 3) | |
hom = torch.tensor([0, 0, 1], | |
dtype=torch.float32, | |
device=rotation_matrix.device) | |
hom = hom.reshape(1, 3, 1).expand(rot_mat.shape[0], -1, -1) | |
rotation_matrix = torch.cat([rot_mat, hom], dim=-1) | |
quaternion = rotation_matrix_to_quaternion(rotation_matrix) | |
aa = quaternion_to_angle_axis(quaternion) | |
aa[torch.isnan(aa)] = 0.0 | |
return aa | |
def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor: | |
""" | |
This function is borrowed from https://github.com/kornia/kornia | |
Convert quaternion vector to angle axis of rotation. | |
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h | |
Args: | |
quaternion (torch.Tensor): tensor with quaternions. | |
Return: | |
torch.Tensor: tensor with angle axis of rotation. | |
Shape: | |
- Input: :math:`(*, 4)` where `*` means, any number of dimensions | |
- Output: :math:`(*, 3)` | |
Example: | |
>>> quaternion = torch.rand(2, 4) # Nx4 | |
>>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3 | |
""" | |
if not torch.is_tensor(quaternion): | |
raise TypeError('Input type is not a torch.Tensor. Got {}'.format( | |
type(quaternion))) | |
if not quaternion.shape[-1] == 4: | |
raise ValueError( | |
'Input must be a tensor of shape Nx4 or 4. Got {}'.format( | |
quaternion.shape)) | |
# unpack input and compute conversion | |
q1: torch.Tensor = quaternion[..., 1] | |
q2: torch.Tensor = quaternion[..., 2] | |
q3: torch.Tensor = quaternion[..., 3] | |
sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3 | |
sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta) | |
cos_theta: torch.Tensor = quaternion[..., 0] | |
two_theta: torch.Tensor = 2.0 * torch.where( | |
cos_theta < 0.0, torch.atan2(-sin_theta, -cos_theta), | |
torch.atan2(sin_theta, cos_theta)) | |
k_pos: torch.Tensor = two_theta / sin_theta | |
k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta) | |
k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg) | |
angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3] | |
angle_axis[..., 0] += q1 * k | |
angle_axis[..., 1] += q2 * k | |
angle_axis[..., 2] += q3 * k | |
return angle_axis | |
def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6): | |
""" | |
This function is borrowed from https://github.com/kornia/kornia | |
Convert 3x4 rotation matrix to 4d quaternion vector | |
This algorithm is based on algorithm described in | |
https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201 | |
Args: | |
rotation_matrix (Tensor): the rotation matrix to convert. | |
Return: | |
Tensor: the rotation in quaternion | |
Shape: | |
- Input: :math:`(N, 3, 4)` | |
- Output: :math:`(N, 4)` | |
Example: | |
>>> input = torch.rand(4, 3, 4) # Nx3x4 | |
>>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4 | |
""" | |
if not torch.is_tensor(rotation_matrix): | |
raise TypeError('Input type is not a torch.Tensor. Got {}'.format( | |
type(rotation_matrix))) | |
if len(rotation_matrix.shape) > 3: | |
raise ValueError( | |
'Input size must be a three dimensional tensor. Got {}'.format( | |
rotation_matrix.shape)) | |
if not rotation_matrix.shape[-2:] == (3, 4): | |
raise ValueError( | |
'Input size must be a N x 3 x 4 tensor. Got {}'.format( | |
rotation_matrix.shape)) | |
rmat_t = torch.transpose(rotation_matrix, 1, 2) | |
mask_d2 = rmat_t[:, 2, 2] < eps | |
mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1] | |
mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1] | |
t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2] | |
q0 = torch.stack([ | |
rmat_t[:, 1, 2] - rmat_t[:, 2, 1], t0, | |
rmat_t[:, 0, 1] + rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2] | |
], -1) | |
t0_rep = t0.repeat(4, 1).t() | |
t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2] | |
q1 = torch.stack([ | |
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] + rmat_t[:, 1, 0], | |
t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1] | |
], -1) | |
t1_rep = t1.repeat(4, 1).t() | |
t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2] | |
q2 = torch.stack([ | |
rmat_t[:, 0, 1] - rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2], | |
rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2 | |
], -1) | |
t2_rep = t2.repeat(4, 1).t() | |
t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2] | |
q3 = torch.stack([ | |
t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1], | |
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] - rmat_t[:, 1, 0] | |
], -1) | |
t3_rep = t3.repeat(4, 1).t() | |
mask_c0 = mask_d2 * mask_d0_d1 | |
mask_c1 = mask_d2 * ~mask_d0_d1 | |
mask_c2 = ~mask_d2 * mask_d0_nd1 | |
mask_c3 = ~mask_d2 * ~mask_d0_nd1 | |
mask_c0 = mask_c0.view(-1, 1).type_as(q0) | |
mask_c1 = mask_c1.view(-1, 1).type_as(q1) | |
mask_c2 = mask_c2.view(-1, 1).type_as(q2) | |
mask_c3 = mask_c3.view(-1, 1).type_as(q3) | |
q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3 | |
q /= torch.sqrt(t0_rep * mask_c0 + t1_rep * mask_c1 + # noqa | |
t2_rep * mask_c2 + t3_rep * mask_c3) # noqa | |
q *= 0.5 | |
return q | |
def perspective_projection(points, rotation, translation, focal_length, | |
camera_center): | |
"""This function computes the perspective projection of a set of points. | |
Input: | |
points (bs, N, 3): 3D points | |
rotation (bs, 3, 3): Camera rotation | |
translation (bs, 3): Camera translation | |
focal_length (bs,) or scalar: Focal length | |
camera_center (bs, 2): Camera center | |
""" | |
batch_size = points.shape[0] | |
K = torch.zeros([batch_size, 3, 3], device=points.device) | |
K[:, 0, 0] = focal_length | |
K[:, 1, 1] = focal_length | |
K[:, 2, 2] = 1. | |
K[:, :-1, -1] = camera_center | |
# Transform points | |
points = torch.einsum('bij,bkj->bki', rotation, points) | |
points = points + translation.unsqueeze(1) | |
# Apply perspective distortion | |
projected_points = points / points[:, :, -1].unsqueeze(-1) | |
# Apply camera intrinsics | |
projected_points = torch.einsum('bij,bkj->bki', K, projected_points) | |
return projected_points[:, :, :-1] | |
def estimate_translation_np(S, | |
joints_2d, | |
joints_conf, | |
focal_length=5000, | |
img_size=224): | |
"""Find camera translation that brings 3D joints S closest to 2D the | |
corresponding joints_2d. | |
Input: | |
S: (25, 3) 3D joint locations | |
joints: (25, 3) 2D joint locations and confidence | |
Returns: | |
(3,) camera translation vector | |
""" | |
num_joints = S.shape[0] | |
# focal length | |
f = np.array([focal_length, focal_length]) | |
# optical center | |
center = np.array([img_size / 2., img_size / 2.]) | |
# transformations | |
Z = np.reshape(np.tile(S[:, 2], (2, 1)).T, -1) | |
XY = np.reshape(S[:, 0:2], -1) | |
OO = np.tile(center, num_joints) | |
F = np.tile(f, num_joints) | |
weight2 = np.reshape(np.tile(np.sqrt(joints_conf), (2, 1)).T, -1) | |
# least squares | |
Q = np.array([ | |
F * np.tile(np.array([1, 0]), num_joints), | |
F * np.tile(np.array([0, 1]), num_joints), | |
OO - np.reshape(joints_2d, -1) | |
]).T | |
c = (np.reshape(joints_2d, -1) - OO) * Z - F * XY | |
# weighted least squares | |
W = np.diagflat(weight2) | |
Q = np.dot(W, Q) | |
c = np.dot(W, c) | |
# square matrix | |
A = np.dot(Q.T, Q) | |
b = np.dot(Q.T, c) | |
# solution | |
trans = np.linalg.solve(A, b) | |
return trans | |
def estimate_translation(S, joints_2d, focal_length=5000., img_size=224.): | |
"""Find camera translation that brings 3D joints S closest to 2D the | |
corresponding joints_2d. | |
Input: | |
S: (B, 49, 3) 3D joint locations | |
joints: (B, 49, 3) 2D joint locations and confidence | |
Returns: | |
(B, 3) camera translation vectors | |
""" | |
device = S.device | |
# Use only joints 25:49 (GT joints) | |
S = S[:, 25:, :].cpu().numpy() | |
joints_2d = joints_2d[:, 25:, :].cpu().numpy() | |
joints_conf = joints_2d[:, :, -1] | |
joints_2d = joints_2d[:, :, :-1] | |
trans = np.zeros((S.shape[0], 3), dtype=np.float32) | |
# Find the translation for each example in the batch | |
for i in range(S.shape[0]): | |
S_i = S[i] | |
joints_i = joints_2d[i] | |
conf_i = joints_conf[i] | |
trans[i] = estimate_translation_np(S_i, | |
joints_i, | |
conf_i, | |
focal_length=focal_length, | |
img_size=img_size) | |
return torch.from_numpy(trans).to(device) | |
def project_points(points_3d, camera, focal_length, img_res): | |
"""Perform orthographic projection of 3D points using the camera | |
parameters, return projected 2D points in image plane. | |
Notes: | |
batch size: B | |
point number: N | |
Args: | |
points_3d (Tensor([B, N, 3])): 3D points. | |
camera (Tensor([B, 3])): camera parameters with the | |
3 channel as (scale, translation_x, translation_y) | |
Returns: | |
points_2d (Tensor([B, N, 2])): projected 2D points | |
in image space. | |
""" | |
batch_size = points_3d.shape[0] | |
device = points_3d.device | |
cam_t = torch.stack([ | |
camera[:, 1], camera[:, 2], 2 * focal_length / | |
(img_res * camera[:, 0] + 1e-9) | |
], | |
dim=-1) | |
camera_center = camera.new_zeros([batch_size, 2]) | |
rot_t = torch.eye(3, device=device, | |
dtype=points_3d.dtype).unsqueeze(0).expand( | |
batch_size, -1, -1) | |
keypoints_2d = perspective_projection(points_3d, | |
rotation=rot_t, | |
translation=cam_t, | |
focal_length=focal_length, | |
camera_center=camera_center) | |
return keypoints_2d | |
def project_points_new(points_3d, pred_cam, focal_length, camera_center): | |
"""Perform orthographic projection of 3D points using the camera | |
parameters, return projected 2D points in image plane. | |
Notes: | |
batch size: B | |
point number: N | |
Args: | |
points_3d (Tensor([B, N, 3])): 3D points. | |
camera (Tensor([B, 3])): camera parameters with the | |
3 channel as (scale, translation_x, translation_y) | |
Returns: | |
points_2d (Tensor([B, N, 2])): projected 2D points | |
in image space. | |
""" | |
batch_size = points_3d.shape[0] | |
device = points_3d.device | |
(s, tx, ty) = (pred_cam[:, 0] + 1e-9), pred_cam[:, 1], pred_cam[:, 2] | |
depth, dx, dy = 1./s, tx/s, ty/s | |
cam_t = torch.stack([dx, dy, depth], 1) | |
# cam_t = torch.stack([ | |
# camera[:, 1], camera[:, 2], 2 * focal_length / | |
# (img_res * camera[:, 0] + 1e-9) | |
# ], | |
# dim=-1) | |
rot_t = torch.eye(3, device=device, | |
dtype=points_3d.dtype).unsqueeze(0).expand( | |
batch_size, -1, -1) | |
keypoints_2d = perspective_projection(points_3d, | |
rotation=rot_t, | |
translation=cam_t, | |
focal_length=focal_length, | |
camera_center=camera_center) | |
return keypoints_2d | |
def weak_perspective_projection(points, scale, translation): | |
"""This function computes the weak perspective projection of a set of | |
points. | |
Input: | |
points (bs, N, 3): 3D points | |
scale (bs,1): scalar | |
translation (bs, 2): point 2D translation | |
""" | |
projected_points = scale.view( | |
-1, 1, 1) * (points[:, :, :2] + translation.view(-1, 1, 2)) | |
return projected_points | |
def estimate_cam_weakperspective(joints3d, | |
joints2d, | |
joints2d_conf, | |
joints3d_conf, | |
img_size) -> torch.Tensor: | |
''' | |
img_size: wh | |
''' | |
w, h = img_size | |
if joints2d_conf is not None: | |
valid_ids = torch.where(joints2d_conf.view(-1) > 0)[0] | |
joints2d = joints2d[valid_ids] | |
if joints3d_conf is not None: | |
valid_ids = torch.where(joints3d_conf.view(-1) > 0)[0] | |
joints3d = joints3d[valid_ids] | |
x1 = torch.min(joints3d[..., 0]) | |
x2 = torch.max(joints3d[..., 0]) | |
y1 = torch.min(joints3d[..., 1]) | |
y2 = torch.max(joints3d[..., 1]) | |
# img_size = img_size if isinstance(img_size, int) else int(img_size[0]) | |
u1 = 2*torch.min(joints2d[..., 0]) / w -1 | |
u2 = 2*torch.max(joints2d[..., 0]) / w -1 | |
v1 = (2 * torch.min(joints2d[..., 1])-h)/max(w,h) | |
v2 = (2 * torch.max(joints2d[..., 1])-h)/max(w,h) | |
# u1 = torch.min(joints2d[..., 0]) / w | |
# u2 = torch.max(joints2d[..., 0]) / w | |
# v1 = torch.min(joints2d[..., 1]) / h | |
# v2 = torch.max(joints2d[..., 1]) / h | |
sx = (u1 - u2) / (x1 - x2) | |
sy = (v1 - v2) / (y1 - y2) | |
s = torch.sqrt(sx * sy) | |
tx_1 = u1 / s - x1 # u1 = s*(tx_1 + x1) | |
ty_1 = v1 / s - y1 # v1 = s*(ty_1 + y1) | |
tx_2 = u2 / s - x2 # u2 = s*(tx_2 + x2) | |
ty_2 = v2 / s - y2 # v2 = s*(ty_2 + y2) | |
tx = (tx_1 + tx_2) / 2 | |
ty = (ty_1 + ty_2) / 2 | |
cam = torch.Tensor([s, tx, ty]).view(3) | |
return cam | |
def estimate_cam_weakperspective_batch( | |
joints3d, joints2d, | |
joints2d_conf, joints3d_conf, | |
img_size): | |
''' | |
img_size: b,w,h | |
''' | |
device = joints3d.device | |
joints2d = joints2d.detach().cpu() | |
joints3d = joints3d.detach().cpu() | |
assert joints2d.ndim == 3 # B, J, 2 | |
assert joints3d.ndim == 3 # B, J, 3 | |
cam = torch.zeros(joints3d.shape[0], 3) | |
for i in range(joints3d.shape[0]): | |
joints3d_i = joints3d[i] | |
joints2d_i = joints2d[i] | |
if joints2d_conf is not None: | |
conf2d_i = joints2d_conf[i].detach().cpu() | |
else: | |
conf2d_i = None | |
if joints3d_conf is not None: | |
conf3d_i = joints3d_conf[i].detach().cpu() | |
else: | |
conf3d_i = None | |
cam[i] = estimate_cam_weakperspective(joints3d=joints3d_i, | |
joints2d=joints2d_i, | |
joints2d_conf=conf2d_i, | |
joints3d_conf=conf3d_i, | |
img_size=img_size[i]) | |
return cam.to(device) | |
def pred_cam_to_transl(pred_camera, focal_length, img_size): | |
pred_cam_t = torch.stack([ | |
pred_camera[:, 1], pred_camera[:, 2], 2 * focal_length / | |
(img_size * pred_camera[:, 0] + 1e-9) | |
], | |
dim=-1) | |
return pred_cam_t |