ttxskk
update
d7e58f0
# Copyright (c) OpenMMLab. All rights reserved.
import os
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from detrsmpl.core.conventions.keypoints_mapping import convert_kps
from detrsmpl.utils.transforms import (
aa_to_rotmat,
make_homegeneous_rotmat_batch,
)
class STAR(nn.Module):
NUM_BODY_JOINTS = 24
def __init__(self,
model_path: str,
gender: str = 'neutral',
keypoint_src: str = 'star',
keypoint_dst: str = 'human_data',
keypoint_approximate: bool = False,
create_global_orient: bool = True,
global_orient: Optional[torch.Tensor] = None,
create_body_pose: bool = True,
body_pose: torch.Tensor = None,
num_betas: int = 10,
create_betas: bool = True,
betas: torch.Tensor = None,
create_transl: bool = True,
transl: torch.Tensor = None,
batch_size: int = 1,
dtype: torch.dtype = torch.float32) -> None:
"""STAR model constructor.
Args:
model_path: str
The path to the folder or to the file where the model
parameters are stored.
gender: str, optional
Which gender to load.
keypoint_src: str
Source convention of keypoints. This convention is used for
keypoints obtained from joint regressors. Keypoints then
undergo conversion into keypoint_dst convention.
keypoint_dst: destination convention of keypoints. This convention
is used for keypoints in the output.
keypoint_approximate: whether to use approximate matching in
convention conversion for keypoints.
create_global_orient: bool, optional
Flag for creating a member variable for the global orientation
of the body. (default = True)
global_orient: torch.tensor, optional, Bx3
The default value for the global orientation variable.
(default = None)
create_body_pose: bool, optional
Flag for creating a member variable for the pose of the body.
(default = True)
body_pose: torch.tensor, optional, Bx(3*24)
The default value for the body pose variable.
(default = None)
num_betas: int, optional
Number of shape components to use
(default = 10).
create_betas: bool, optional
Flag for creating a member variable for the shape space
(default = True).
betas: torch.tensor, optional, Bx10
The default value for the shape member variable.
(default = None)
create_transl: bool, optional
Flag for creating a member variable for the translation
of the body. (default = True)
transl: torch.tensor, optional, Bx3
The default value for the transl variable.
(default = None)
batch_size: int, optional
The batch size used for creating the member variables.
dtype: torch.dtype, optional
The data type for the created variables.
"""
if gender not in ['male', 'female', 'neutral']:
raise RuntimeError('Invalid gender! Should be one of '
'[\'male\', \'female\', or \'neutral\']!')
self.gender = gender
model_fname = 'STAR_{}.npz'.format(gender.upper())
if not os.path.exists(model_path):
raise RuntimeError('Path {} does not exist!'.format(model_path))
elif os.path.isdir(model_path):
star_path = os.path.join(model_path, model_fname)
else:
if os.path.split(model_path)[-1] != model_fname:
raise RuntimeError(
f'Model filename ({model_fname}) and gender '
f'({gender}) are incompatible!')
star_path = model_path
super(STAR, self).__init__()
self.keypoint_src = keypoint_src
self.keypoint_dst = keypoint_dst
self.keypoint_approximate = keypoint_approximate
star_model = np.load(star_path, allow_pickle=True)
J_regressor = star_model['J_regressor']
self.num_betas = num_betas
# Model sparse joints regressor, regresses joints location from a mesh
self.register_buffer('J_regressor',
torch.tensor(J_regressor, dtype=torch.float))
# Model skinning weights
self.register_buffer(
'weights', torch.tensor(star_model['weights'], dtype=torch.float))
# Model pose corrective blend shapes
self.register_buffer(
'posedirs',
torch.tensor(star_model['posedirs'].reshape((-1, 93)),
dtype=torch.float))
# Mean Shape
self.register_buffer(
'v_template',
torch.tensor(star_model['v_template'], dtype=torch.float))
# Shape corrective blend shapes
self.register_buffer(
'shapedirs',
torch.tensor(star_model['shapedirs'][:, :, :num_betas],
dtype=torch.float))
# Mesh traingles
self.register_buffer(
'faces', torch.from_numpy(star_model['f'].astype(np.int64)))
self.f = star_model['f']
# Kinematic tree of the model
self.register_buffer(
'kintree_table',
torch.from_numpy(star_model['kintree_table'].astype(np.int64)))
id_to_col = {
self.kintree_table[1, i].item(): i
for i in range(self.kintree_table.shape[1])
}
self.register_buffer(
'parent',
torch.tensor([
id_to_col[self.kintree_table[0, it].item()]
for it in range(1, self.kintree_table.shape[1])
],
dtype=torch.int64))
if create_global_orient:
if global_orient is None:
default_global_orient = torch.zeros([batch_size, 3],
dtype=dtype)
else:
if torch.is_tensor(global_orient):
default_global_orient = global_orient.clone().detach()
else:
default_global_orient = torch.tensor(global_orient,
dtype=dtype)
global_orient = nn.Parameter(default_global_orient,
requires_grad=True)
self.register_parameter('global_orient', global_orient)
if create_body_pose:
if body_pose is None:
default_body_pose = torch.zeros(
[batch_size, self.NUM_BODY_JOINTS * 3], dtype=dtype)
else:
if torch.is_tensor(body_pose):
default_body_pose = body_pose.clone().detach()
else:
default_body_pose = torch.tensor(body_pose, dtype=dtype)
self.register_parameter(
'body_pose', nn.Parameter(default_body_pose,
requires_grad=True))
if create_betas:
if betas is None:
default_betas = torch.zeros([batch_size, self.num_betas],
dtype=dtype)
else:
if torch.is_tensor(betas):
default_betas = betas.clone().detach()
else:
default_betas = torch.tensor(betas, dtype=dtype)
self.register_parameter(
'betas', nn.Parameter(default_betas, requires_grad=True))
if create_transl:
if transl is None:
default_transl = torch.zeros([batch_size, 3],
dtype=dtype,
requires_grad=True)
else:
default_transl = torch.tensor(transl, dtype=dtype)
self.register_parameter(
'transl', nn.Parameter(default_transl, requires_grad=True))
self.verts = None
self.J = None
self.R = None
def forward(self,
global_orient: Optional[torch.Tensor] = None,
body_pose: Optional[torch.Tensor] = None,
betas: Optional[torch.Tensor] = None,
transl: Optional[torch.Tensor] = None,
return_verts: bool = True,
return_full_pose: bool = True) -> torch.Tensor:
"""Forward pass for the STAR model.
Args:
global_orient: torch.tensor, optional, shape Bx3
Global orientation (rotation) of the body. If given, ignore the
member variable and use it as the global rotation of the body.
Useful if someone wishes to predicts this with an external
model. (default=None)
body_pose: torch.Tensor, shape Bx(J*3)
Pose parameters for the STAR model. It should be a tensor that
contains joint rotations in axis-angle format. If given, ignore
the member variable and use it as the body parameters.
(default=None)
betas: torch.Tensor, shape Bx10
Shape parameters for the STAR model. If given, ignore the
member variable and use it as shape parameters. (default=None)
transl: torch.Tensor, shape Bx3
Translation vector for the STAR model. If given, ignore the
member variable and use it as the translation of the body.
(default=None)
Returns:
output: Contains output parameters and attributes corresponding
to other body models.
"""
global_orient = (global_orient
if global_orient is not None else self.global_orient)
body_pose = body_pose if body_pose is not None else self.body_pose
betas = betas if betas is not None else self.betas
apply_transl = transl is not None or hasattr(self, 'transl')
if transl is None and hasattr(self, 'transl'):
transl = self.transl
batch_size = body_pose.shape[0]
v_template = self.v_template[None, :]
shapedirs = self.shapedirs.view(-1, self.num_betas)[None, :].expand(
batch_size, -1, -1)
beta = betas[:, :, None]
v_shaped = torch.matmul(shapedirs, beta).view(-1, 6890, 3) + v_template
J = torch.einsum('bik,ji->bjk', [v_shaped, self.J_regressor])
pose_quat = self.normalize_quaternion(body_pose.view(-1, 3)).view(
batch_size, -1)
pose_feat = torch.cat((pose_quat[:, 4:], beta[:, 1]), 1)
R = aa_to_rotmat(body_pose.view(-1, 3)).view(batch_size, 24, 3, 3)
R = R.view(batch_size, 24, 3, 3)
posedirs = self.posedirs[None, :].expand(batch_size, -1, -1)
v_posed = v_shaped + torch.matmul(
posedirs, pose_feat[:, :, None]).view(-1, 6890, 3)
root_transform = make_homegeneous_rotmat_batch(
torch.cat((R[:, 0], J[:, 0][:, :, None]), 2))
results = [root_transform]
for i in range(0, self.parent.shape[0]):
transform_i = make_homegeneous_rotmat_batch(
torch.cat((R[:, i + 1], J[:, i + 1][:, :, None] -
J[:, self.parent[i]][:, :, None]), 2))
curr_res = torch.matmul(results[self.parent[i]], transform_i)
results.append(curr_res)
results = torch.stack(results, dim=1)
posed_joints = results[:, :, :3, 3]
if apply_transl:
posed_joints += transl[:, None, :]
v_posed += transl[:, None, :]
joints, joint_mask = convert_kps(posed_joints,
src=self.keypoint_src,
dst=self.keypoint_dst,
approximate=self.keypoint_approximate)
joint_mask = torch.tensor(joint_mask,
dtype=torch.uint8,
device=joints.device)
joint_mask = joint_mask.reshape(1, -1).expand(batch_size, -1)
output = dict(global_orient=global_orient,
body_pose=body_pose,
joints=posed_joints,
joint_mask=joint_mask,
keypoints=torch.cat([joints, joint_mask[:, :, None]],
dim=-1),
betas=beta)
if return_verts:
output['vertices'] = v_posed
if return_full_pose:
output['full_pose'] = torch.cat([global_orient, body_pose], dim=1)
return output
@classmethod
def normalize_quaternion(self, theta: torch.Tensor) -> torch.Tensor:
"""Computes a normalized quaternion ([0,0,0,0] when the body is in rest
pose) given joint angles.
Args:
theta (torch.Tensor): A tensor of joints axis angles,
batch size x number of joints x 3
Returns:
quat (torch.Tensor)
"""
l1norm = torch.norm(theta + 1e-8, p=2, dim=1)
angle = torch.unsqueeze(l1norm, -1)
normalized = torch.div(theta, angle)
angle = angle * 0.5
v_cos = torch.cos(angle)
v_sin = torch.sin(angle)
quat = torch.cat([v_sin * normalized, v_cos - 1], dim=1)
return quat