ttxskk
update
d7e58f0
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional
import numpy as np
import torch
from smplx import SMPL as _SMPL
from smplx.lbs import batch_rigid_transform, blend_shapes, vertices2joints
from detrsmpl.core.conventions.keypoints_mapping import (
convert_kps,
get_keypoint_num,
)
from detrsmpl.core.conventions.segmentation import body_segmentation
from detrsmpl.models.utils import batch_inverse_kinematics_transform
from detrsmpl.utils.transforms import quat_to_rotmat
class SMPL(_SMPL):
"""Extension of the official SMPL implementation."""
body_pose_keys = {
'global_orient',
'body_pose',
}
full_pose_keys = {
'global_orient',
'body_pose',
}
NUM_VERTS = 6890
NUM_FACES = 13776
def __init__(self,
*args,
keypoint_src: str = 'smpl_45',
keypoint_dst: str = 'human_data',
keypoint_approximate: bool = False,
joints_regressor: str = None,
extra_joints_regressor: str = None,
**kwargs) -> None:
"""
Args:
*args: extra arguments for SMPL initialization.
keypoint_src: source convention of keypoints. This convention
is used for keypoints obtained from joint regressors.
Keypoints then undergo conversion into keypoint_dst
convention.
keypoint_dst: destination convention of keypoints. This convention
is used for keypoints in the output.
keypoint_approximate: whether to use approximate matching in
convention conversion for keypoints.
joints_regressor: path to joint regressor. Should be a .npy
file. If provided, replaces the official J_regressor of SMPL.
extra_joints_regressor: path to extra joint regressor. Should be
a .npy file. If provided, extra joints are regressed and
concatenated after the joints regressed with the official
J_regressor or joints_regressor.
**kwargs: extra keyword arguments for SMPL initialization.
Returns:
None
"""
super(SMPL, self).__init__(*args, **kwargs)
# joints = [JOINT_MAP[i] for i in JOINT_NAMES]
self.keypoint_src = keypoint_src
self.keypoint_dst = keypoint_dst
self.keypoint_approximate = keypoint_approximate
# override the default SMPL joint regressor if available
if joints_regressor is not None:
joints_regressor = torch.tensor(np.load(joints_regressor),
dtype=torch.float)
self.register_buffer('joints_regressor', joints_regressor)
# allow for extra joints to be regressed if available
if extra_joints_regressor is not None:
joints_regressor_extra = torch.tensor(
np.load(extra_joints_regressor), dtype=torch.float)
self.register_buffer('joints_regressor_extra',
joints_regressor_extra)
self.num_verts = self.get_num_verts()
self.num_joints = get_keypoint_num(convention=self.keypoint_dst)
self.body_part_segmentation = body_segmentation('smpl')
def forward(self,
*args,
return_verts: bool = True,
return_full_pose: bool = False,
**kwargs) -> dict:
"""Forward function.
Args:
*args: extra arguments for SMPL
return_verts: whether to return vertices
return_full_pose: whether to return full pose parameters
**kwargs: extra arguments for SMPL
Returns:
output: contains output parameters and attributes
"""
kwargs['get_skin'] = True
smpl_output = super(SMPL, self).forward(*args, **kwargs)
if not hasattr(self, 'joints_regressor'):
joints = smpl_output.joints
else:
joints = vertices2joints(self.joints_regressor,
smpl_output.vertices)
if hasattr(self, 'joints_regressor_extra'):
extra_joints = vertices2joints(self.joints_regressor_extra,
smpl_output.vertices)
joints = torch.cat([joints, extra_joints], dim=1)
joints, joint_mask = convert_kps(joints,
src=self.keypoint_src,
dst=self.keypoint_dst,
approximate=self.keypoint_approximate)
if isinstance(joint_mask, np.ndarray):
joint_mask = torch.tensor(joint_mask,
dtype=torch.uint8,
device=joints.device)
batch_size = joints.shape[0]
joint_mask = joint_mask.reshape(1, -1).expand(batch_size, -1)
output = dict(global_orient=smpl_output.global_orient,
body_pose=smpl_output.body_pose,
joints=joints,
joint_mask=joint_mask,
keypoints=torch.cat([joints, joint_mask[:, :, None]],
dim=-1),
betas=smpl_output.betas)
if return_verts:
output['vertices'] = smpl_output.vertices
if return_full_pose:
output['full_pose'] = smpl_output.full_pose
return output
@classmethod
def tensor2dict(cls,
full_pose: torch.Tensor,
betas: Optional[torch.Tensor] = None,
transl: Optional[torch.Tensor] = None):
"""Convert full pose tensor to pose dict.
Args:
full_pose (torch.Tensor): shape should be (..., 165) or
(..., 55, 3). All zeros for T-pose.
betas (Optional[torch.Tensor], optional): shape should be
(..., 10). The batch num should be 1 or corresponds with
full_pose.
Defaults to None.
transl (Optional[torch.Tensor], optional): shape should be
(..., 3). The batch num should be 1 or corresponds with
full_pose.
Defaults to None.
Returns:
dict: dict of smpl pose containing transl & betas.
"""
full_pose = full_pose.view(-1, (cls.NUM_BODY_JOINTS + 1) * 3)
body_pose = full_pose[:, 3:]
global_orient = full_pose[:, :3]
batch_size = full_pose.shape[0]
if betas is not None:
# squeeze or unsqueeze betas to 2 dims
betas = betas.view(-1, betas.shape[-1])
if betas.shape[0] == 1:
betas = betas.repeat(batch_size, 1)
else:
betas = betas
transl = transl.view(batch_size, -1) if transl is not None else transl
return {
'betas': betas,
'body_pose': body_pose,
'global_orient': global_orient,
'transl': transl,
}
@classmethod
def dict2tensor(cls, smpl_dict: dict) -> torch.Tensor:
"""Convert smpl pose dict to full pose tensor.
Args:
smpl_dict (dict): smpl pose dict.
Returns:
torch: full pose tensor.
"""
assert cls.body_pose_keys.issubset(smpl_dict)
for k in smpl_dict:
if isinstance(smpl_dict[k], np.ndarray):
smpl_dict[k] = torch.Tensor(smpl_dict[k])
global_orient = smpl_dict['global_orient'].view(-1, 3)
body_pose = smpl_dict['body_pose'].view(-1, 3 * cls.NUM_BODY_JOINTS)
full_pose = torch.cat([global_orient, body_pose], dim=1)
return full_pose
class GenderedSMPL(torch.nn.Module):
"""A wrapper of SMPL to handle gendered inputs."""
def __init__(self,
*args,
keypoint_src: str = 'smpl_45',
keypoint_dst: str = 'human_data',
keypoint_approximate: bool = False,
joints_regressor: str = None,
extra_joints_regressor: str = None,
**kwargs) -> None:
"""
Args:
*args: extra arguments for SMPL initialization.
keypoint_src: source convention of keypoints. This convention
is used for keypoints obtained from joint regressors.
Keypoints then undergo conversion into keypoint_dst
convention.
keypoint_dst: destination convention of keypoints. This convention
is used for keypoints in the output.
keypoint_approximate: whether to use approximate matching in
convention conversion for keypoints.
joints_regressor: path to joint regressor. Should be a .npy
file. If provided, replaces the official J_regressor of SMPL.
extra_joints_regressor: path to extra joint regressor. Should be
a .npy file. If provided, extra joints are regressed and
concatenated after the joints regressed with the official
J_regressor or joints_regressor.
**kwargs: extra keyword arguments for SMPL initialization.
Returns:
None
"""
super(GenderedSMPL, self).__init__()
assert 'gender' not in kwargs, \
self.__class__.__name__ + \
'does not need \'gender\' for initialization.'
self.smpl_neutral = SMPL(*args,
gender='neutral',
keypoint_src=keypoint_src,
keypoint_dst=keypoint_dst,
keypoint_approximate=keypoint_approximate,
joints_regressor=joints_regressor,
extra_joints_regressor=extra_joints_regressor,
**kwargs)
self.smpl_male = SMPL(*args,
gender='male',
keypoint_src=keypoint_src,
keypoint_dst=keypoint_dst,
keypoint_approximate=keypoint_approximate,
joints_regressor=joints_regressor,
extra_joints_regressor=extra_joints_regressor,
**kwargs)
self.smpl_female = SMPL(*args,
gender='female',
keypoint_src=keypoint_src,
keypoint_dst=keypoint_dst,
keypoint_approximate=keypoint_approximate,
joints_regressor=joints_regressor,
extra_joints_regressor=extra_joints_regressor,
**kwargs)
self.num_verts = self.smpl_neutral.num_verts
self.num_joints = self.smpl_neutral.num_joints
self.faces = self.smpl_neutral.faces
def forward(self,
*args,
betas: torch.Tensor = None,
body_pose: torch.Tensor = None,
global_orient: torch.Tensor = None,
transl: torch.Tensor = None,
return_verts: bool = True,
return_full_pose: bool = False,
gender: torch.Tensor = None,
device=None,
**kwargs):
"""Forward function.
Note:
B: batch size
J: number of joints of model, J = 23 (SMPL)
K: number of keypoints
Args:
*args: extra arguments
betas: Tensor([B, 10]), human body shape parameters of SMPL model.
body_pose: Tensor([B, J*3] or [B, J, 3, 3]), human body pose
parameters of SMPL model. It should be axis-angle vector
([B, J*3]) or rotation matrix ([B, J, 3, 3)].
global_orient: Tensor([B, 3] or [B, 1, 3, 3]), global orientation
of human body. It should be axis-angle vector ([B, 3]) or
rotation matrix ([B, 1, 3, 3)].
transl: Tensor([B, 3]), global translation of human body.
gender: Tensor([B]), gender parameters of human body. -1 for
neutral, 0 for male , 1 for female.
device: the device of the output
**kwargs: extra keyword arguments
Returns:
outputs (dict): Dict with mesh vertices and joints.
- vertices: Tensor([B, V, 3]), mesh vertices
- joints: Tensor([B, K, 3]), 3d keypoints regressed from
mesh vertices.
"""
batch_size = None
for attr in [betas, body_pose, global_orient, transl]:
if attr is not None:
if device is None:
device = attr.device
if batch_size is None:
batch_size = attr.shape[0]
else:
assert batch_size == attr.shape[0]
if gender is not None:
output = {
'vertices':
torch.zeros([batch_size, self.num_verts, 3], device=device),
'joints':
torch.zeros([batch_size, self.num_joints, 3], device=device),
'joint_mask':
torch.zeros([batch_size, self.num_joints],
dtype=torch.uint8,
device=device)
}
for body_model, gender_label in \
[(self.smpl_neutral, -1),
(self.smpl_male, 0),
(self.smpl_female, 1)]:
gender_idxs = gender == gender_label
# skip if no such gender is present
if gender_idxs.sum() == 0:
continue
output_model = body_model(
betas=betas[gender_idxs] if betas is not None else None,
body_pose=body_pose[gender_idxs]
if body_pose is not None else None,
global_orient=global_orient[gender_idxs]
if global_orient is not None else None,
transl=transl[gender_idxs] if transl is not None else None,
**kwargs)
output['joints'][gender_idxs] = output_model['joints']
# TODO: quick fix
if 'joint_mask' in output_model:
output['joint_mask'][gender_idxs] = output_model[
'joint_mask']
if return_verts:
output['vertices'][gender_idxs] = output_model['vertices']
if return_full_pose:
output['full_pose'][gender_idxs] = output_model[
'full_pose']
else:
output = self.smpl_neutral(betas=betas,
body_pose=body_pose,
global_orient=global_orient,
transl=transl,
**kwargs)
return output
def to_tensor(array, dtype=torch.float32):
if 'torch.tensor' not in str(type(array)):
return torch.tensor(array, dtype=dtype)
def to_np(array, dtype=np.float32):
if 'scipy.sparse' in str(type(array)):
array = array.todense()
return np.array(array, dtype=dtype)
class HybrIKSMPL(SMPL):
"""Extension of the SMPL for HybrIK."""
NUM_JOINTS = 23
NUM_BODY_JOINTS = 23
NUM_BETAS = 10
JOINT_NAMES = [
'pelvis',
'left_hip',
'right_hip', # 2
'spine1',
'left_knee',
'right_knee', # 5
'spine2',
'left_ankle',
'right_ankle', # 8
'spine3',
'left_foot',
'right_foot', # 11
'neck',
'left_collar',
'right_collar', # 14
'jaw', # 15
'left_shoulder',
'right_shoulder', # 17
'left_elbow',
'right_elbow', # 19
'left_wrist',
'right_wrist', # 21
'left_thumb',
'right_thumb', # 23
'head',
'left_middle',
'right_middle', # 26
'left_bigtoe',
'right_bigtoe' # 28
]
LEAF_NAMES = [
'head', 'left_middle', 'right_middle', 'left_bigtoe', 'right_bigtoe'
]
root_idx_17 = 0
root_idx_smpl = 0
def __init__(self, *args, extra_joints_regressor=None, **kwargs):
"""
Args:
*args: extra arguments for SMPL initialization.
extra_joints_regressor: path to extra joint regressor. Should be
a .npy file. If provided, extra joints are regressed and
concatenated after the joints regressed with the official
J_regressor or joints_regressor.
**kwargs: extra keyword arguments for SMPL initialization.
Returns:
None
"""
super(HybrIKSMPL,
self).__init__(*args,
extra_joints_regressor=extra_joints_regressor,
create_betas=False,
create_global_orient=False,
create_body_pose=False,
create_transl=False,
**kwargs)
self.dtype = torch.float32
self.num_joints = 29
self.ROOT_IDX = self.JOINT_NAMES.index('pelvis')
self.LEAF_IDX = [
self.JOINT_NAMES.index(name) for name in self.LEAF_NAMES
]
self.SPINE3_IDX = 9
# # indices of parents for each joints
parents = torch.zeros(len(self.JOINT_NAMES), dtype=torch.long)
# extend kinematic tree
parents[:24] = self.parents
parents[24] = 15
parents[25] = 22
parents[26] = 23
parents[27] = 10
parents[28] = 11
if parents.shape[0] > self.num_joints:
parents = parents[:24]
self.register_buffer('children_map',
self._parents_to_children(parents))
self.parents = parents
def _parents_to_children(self, parents):
children = torch.ones_like(parents) * -1
for i in range(self.num_joints):
if children[parents[i]] < 0:
children[parents[i]] = i
for i in self.LEAF_IDX:
if i < children.shape[0]:
children[i] = -1
children[self.SPINE3_IDX] = -3
children[0] = 3
children[self.SPINE3_IDX] = self.JOINT_NAMES.index('neck')
return children
def forward(self,
pose_skeleton,
betas,
phis,
global_orient,
transl=None,
return_verts=True,
leaf_thetas=None):
"""Inverse pass for the SMPL model.
Args:
pose_skeleton: torch.tensor, optional, shape Bx(J*3)
It should be a tensor that contains joint locations in
(img, Y, Z) format. (default=None)
betas: torch.tensor, optional, shape Bx10
It can used if shape parameters
`betas` are predicted from some external model.
(default=None)
phis: torch.tensor, shape Bx23x2
Rotation on bone axis parameters
global_orient: torch.tensor, optional, shape Bx3
Global Orientations.
transl: torch.tensor, optional, shape Bx3
Global Translations.
return_verts: bool, optional
Return the vertices. (default=True)
leaf_thetas: torch.tensor, optional, shape Bx5x4
Quaternions of 5 leaf joints. (default=None)
Returns
outputs: output dictionary.
"""
batch_size = pose_skeleton.shape[0]
if leaf_thetas is not None:
leaf_thetas = leaf_thetas.reshape(batch_size * 5, 4)
leaf_thetas = quat_to_rotmat(leaf_thetas)
batch_size = max(betas.shape[0], pose_skeleton.shape[0])
device = betas.device
# 1. Add shape contribution
v_shaped = self.v_template + blend_shapes(betas, self.shapedirs)
# 2. Get the rest joints
# NxJx3 array
if leaf_thetas is not None:
rest_J = vertices2joints(self.J_regressor, v_shaped)
else:
rest_J = torch.zeros((v_shaped.shape[0], 29, 3),
dtype=self.dtype,
device=device)
rest_J[:, :24] = vertices2joints(self.J_regressor, v_shaped)
leaf_number = [411, 2445, 5905, 3216, 6617]
leaf_vertices = v_shaped[:, leaf_number].clone()
rest_J[:, 24:] = leaf_vertices
# 3. Get the rotation matrics
rot_mats, rotate_rest_pose = batch_inverse_kinematics_transform(
pose_skeleton,
global_orient,
phis,
rest_J.clone(),
self.children_map,
self.parents,
dtype=self.dtype,
train=self.training,
leaf_thetas=leaf_thetas)
test_joints = True
if test_joints:
new_joints, A = batch_rigid_transform(rot_mats,
rest_J[:, :24].clone(),
self.parents[:24],
dtype=self.dtype)
else:
new_joints = None
# assert torch.mean(torch.abs(rotate_rest_pose - new_joints)) < 1e-5
# 4. Add pose blend shapes
# rot_mats: N x (J + 1) x 3 x 3
ident = torch.eye(3, dtype=self.dtype, device=device)
pose_feature = (rot_mats[:, 1:] - ident).view([batch_size, -1])
pose_offsets = torch.matmul(pose_feature, self.posedirs) \
.view(batch_size, -1, 3)
v_posed = pose_offsets + v_shaped
# 5. Do skinning:
# W is N x V x (J + 1)
W = self.lbs_weights.unsqueeze(dim=0).expand([batch_size, -1, -1])
# (N x V x (J + 1)) x (N x (J + 1) x 16)
num_joints = self.J_regressor.shape[0]
T = torch.matmul(W, A.view(batch_size, num_joints, 16)) \
.view(batch_size, -1, 4, 4)
homogen_coord = torch.ones([batch_size, v_posed.shape[1], 1],
dtype=self.dtype,
device=device)
v_posed_homo = torch.cat([v_posed, homogen_coord], dim=2)
v_homo = torch.matmul(T, torch.unsqueeze(v_posed_homo, dim=-1))
vertices = v_homo[:, :, :3, 0]
joints_from_verts = vertices2joints(self.joints_regressor_extra,
vertices)
# rot_mats = rot_mats.reshape(batch_size * 24, 3, 3)
if transl is not None:
new_joints += transl.unsqueeze(dim=1)
vertices += transl.unsqueeze(dim=1)
joints_from_verts += transl.unsqueeze(dim=1)
else:
new_joints = new_joints - \
new_joints[:, self.root_idx_smpl, :].unsqueeze(1).detach()
joints_from_verts = joints_from_verts - \
joints_from_verts[:, self.root_idx_17, :].unsqueeze(1).detach()
output = {
'vertices': vertices,
'joints': new_joints,
'poses': rot_mats,
'joints_from_verts': joints_from_verts,
}
return output