AiOS / detrsmpl /core /visualization /visualize_smpl.py
ttxskk
update
d7e58f0
# yapf: disable
import copy
import glob
import os
import os.path as osp
import shutil
import warnings
from functools import partial
from pathlib import Path
from typing import List, Optional, Tuple, Union
import mmcv
import numpy as np
import torch
import torch.nn as nn
from colormap import Color
from detrsmpl.core.cameras import (
WeakPerspectiveCameras,
compute_orbit_cameras,
)
from detrsmpl.core.cameras.builder import build_cameras
from detrsmpl.core.conventions.cameras.convert_convention import \
convert_camera_matrix # prevent yapf isort conflict
from detrsmpl.core.conventions.segmentation import body_segmentation
from detrsmpl.core.renderer.torch3d_renderer import render_runner
from detrsmpl.core.renderer.torch3d_renderer.meshes import \
ParametricMeshes # noqa: E501
from detrsmpl.core.renderer.torch3d_renderer.render_smpl_config import (
RENDER_CONFIGS,
)
from detrsmpl.core.renderer.torch3d_renderer.smpl_renderer import SMPLRenderer
from detrsmpl.core.renderer.torch3d_renderer.utils import \
align_input_to_padded # noqa: E501
from detrsmpl.models.body_models.builder import build_body_model
from detrsmpl.utils.demo_utils import (
convert_bbox_to_intrinsic,
convert_crop_cam_to_orig_img,
convert_kp2d_to_bbox,
get_default_hmr_intrinsic,
get_different_colors,
)
from detrsmpl.utils.ffmpeg_utils import (
check_input_path,
images_to_array,
prepare_output_path,
vid_info_reader,
video_to_array,
video_to_images,
)
from detrsmpl.utils.mesh_utils import save_meshes_as_objs, save_meshes_as_plys
from detrsmpl.utils.path_utils import check_path_suffix
# yapf: enable
try:
from typing import Literal
except ImportError:
from typing_extensions import Literal
def _prepare_background(image_array, frame_list, origin_frames, output_path,
start, end, img_format, overwrite, num_frames,
read_frames_batch):
"""Compare among `image_array`, `frame_list` and `origin_frames` and decide
whether to save the temp background images."""
if num_frames > 300:
read_frames_batch = True
frames_folder = None
remove_folder = False
if isinstance(image_array, np.ndarray):
image_array = torch.Tensor(image_array)
if image_array is not None:
if image_array.ndim == 3:
image_array = image_array[None]
if image_array.shape[0] == 1:
image_array = image_array.repeat(num_frames, 1, 1, 1)
frame_list = None
origin_frames = None
image_array = image_array[start:end]
# check the output path and get the image_array
if output_path is not None:
prepare_output_path(output_path=output_path,
allowed_suffix=['.mp4', 'gif', '.png', '.jpg','.jpeg'],
tag='output video',
path_type='auto',
overwrite=overwrite)
if image_array is None:
# choose in frame_list or origin_frames
# if all None, will use pure white background
if frame_list is None and origin_frames is None:
print(
'No background provided, will use pure white background.')
elif frame_list is not None and origin_frames is not None:
warnings.warn('Redundant input, will only use frame_list.')
origin_frames = None
# read the origin frames as array if any.
if frame_list is None and origin_frames is not None:
check_input_path(input_path=origin_frames,
allowed_suffix=['.mp4', '.gif', ''],
tag='origin frames',
path_type='auto')
# if origin_frames is a video, write it as a folder of images
# if read_frames_batch is True, else read directly as an array.
if Path(origin_frames).is_file():
if read_frames_batch:
frames_folder = osp.join(
Path(output_path).parent,
Path(output_path).name + '_input_temp')
os.makedirs(frames_folder, exist_ok=True)
video_to_images(origin_frames,
frames_folder,
img_format=img_format,
start=start,
end=end)
remove_folder = True
else:
remove_folder = False
frames_folder = None
image_array = video_to_array(origin_frames,
start=start,
end=end)
# if origin_frames is a folder, write it as a folder of images
# read the folder as an array if read_frames_batch is True
# else return frames_folder for reading during rendering.
else:
if read_frames_batch:
frames_folder = origin_frames
remove_folder = False
image_array = None
else:
image_array = images_to_array(origin_frames,
img_format=img_format,
start=start,
end=end)
remove_folder = False
frames_folder = origin_frames
# if frame_list is not None, move the images into a folder
# read the folder as an array if read_frames_batch is True
# else return frames_folder for reading during rendering.
elif frame_list is not None and origin_frames is None:
frames_folder = osp.join(
Path(output_path).parent,
Path(output_path).name + '_input_temp')
os.makedirs(frames_folder, exist_ok=True)
for frame_idx, frame_path in enumerate(frame_list):
if check_path_suffix(
path_str=frame_path,
allowed_suffix=['.jpg', '.png', '.jpeg']):
shutil.copy(
frame_path,
os.path.join(frames_folder,
'%06d.png' % frame_idx))
img_format = '%06d.png'
if not read_frames_batch:
image_array = images_to_array(frames_folder,
img_format=img_format,
remove_raw_files=True)
frames_folder = None
remove_folder = False
else:
image_array = None
remove_folder = True
return image_array, remove_folder, frames_folder
def _prepare_body_model(body_model, body_model_config):
"""Prepare `body_model` from `body_model_config` or existing
`body_model`."""
if body_model is None:
if body_model_config is not None:
body_model_config = copy.deepcopy(body_model_config)
model_path = body_model_config.get('model_path', None)
model_type = body_model_config.get('type').lower()
if model_type not in ['smpl', 'smplx']:
raise ValueError(f'Do not support {model_type}, please choose'
f' in `smpl` or `smplx.')
if model_path and osp.isdir(model_path):
model_path = osp.join(model_path, model_type)
body_model_config.update(model_path=model_path)
body_model = build_body_model(body_model_config)
assert os.path.isdir(model_path)
else:
raise FileNotFoundError('Wrong model_path.'
' File or directory does not exist.')
else:
raise ValueError('Please input body_model_config.')
else:
if body_model_config is not None:
warnings.warn('Redundant input, will take body_model directly'
'and ignore body_model_config.')
return body_model
def _prepare_input_pose(verts, poses, betas, transl):
"""Prepare input pose data as tensor and ensure correct temporal slice."""
if verts is None and poses is None:
raise ValueError('Please input valid poses or verts.')
elif (verts is not None) and (poses is not None):
warnings.warn('Redundant input, will take verts and ignore poses & '
'betas & transl.')
poses = None
transl = None
betas = None
elif isinstance(poses, dict):
transl = poses.get('transl', transl)
betas = poses.get('betas', betas)
if isinstance(verts, np.ndarray):
verts = torch.Tensor(verts)
num_frames = verts.shape[0]
elif isinstance(verts, torch.Tensor):
num_frames = verts.shape[0]
if isinstance(poses, np.ndarray):
poses = torch.Tensor(poses)
num_frames = poses.shape[0]
elif isinstance(poses, torch.Tensor):
num_frames = poses.shape[0]
elif isinstance(poses, dict):
for k, v in poses.items():
if isinstance(v, np.ndarray):
poses[k] = torch.tensor(v)
num_frames = poses['body_pose'].shape[0]
if isinstance(betas, np.ndarray):
betas = torch.Tensor(betas)
if betas is not None:
if betas.shape[0] != num_frames:
times = num_frames // betas.shape[0]
if betas.ndim == 2:
betas = betas.repeat(times, 1)[:num_frames]
elif betas.ndim == 3:
betas = betas.repeat(times, 1, 1)[:num_frames]
print(f'betas will be repeated by dim 0 for {times} times.')
if isinstance(transl, np.ndarray):
transl = torch.Tensor(transl)
return verts, poses, betas, transl
def _prepare_mesh(poses, betas, transl, verts, start, end, body_model):
"""Prepare the mesh info for rendering."""
NUM_JOINTS = body_model.NUM_JOINTS
NUM_BODY_JOINTS = body_model.NUM_BODY_JOINTS
NUM_DIM = 3 * (NUM_JOINTS + 1)
body_pose_keys = body_model.body_pose_keys
joints = None
if poses is not None:
if isinstance(poses, dict):
if not body_pose_keys.issubset(poses):
raise KeyError(
f'{str(poses.keys())}, Please make sure that your '
f'input dict has all of {", ".join(body_pose_keys)}')
num_frames = poses['body_pose'].shape[0]
_, num_person, _ = poses['body_pose'].view(
num_frames, -1, NUM_BODY_JOINTS * 3).shape
full_pose = body_model.dict2tensor(poses)
full_pose = full_pose[start:end]
elif isinstance(poses, torch.Tensor):
if poses.shape[-1] != NUM_DIM:
raise ValueError(
f'Please make sure your poses is {NUM_DIM} dims in'
f'the last axis. Your input shape: {poses.shape}')
poses = poses.view(poses.shape[0], -1, (NUM_JOINTS + 1) * 3)
num_frames, num_person, _ = poses.shape
full_pose = poses[start:end]
else:
raise ValueError('Wrong pose type, should be `dict` or `tensor`.')
# multi person check
if num_person > 1:
if betas is not None:
num_betas = betas.shape[-1]
betas = betas.view(num_frames, -1, num_betas)
if betas.shape[1] == 1:
betas = betas.repeat(1, num_person, 1)
warnings.warn(
'Only one betas for multi-person, will all be the '
'same body shape.')
elif betas.shape[1] > num_person:
betas = betas[:, :num_person]
warnings.warn(
f'Betas shape exceed, will be sliced as {betas.shape}.'
)
elif betas.shape[1] == num_person:
pass
else:
raise ValueError(
f'Odd betas shape: {betas.shape}, inconsistent'
f'with poses in num_person: {poses.shape}.')
else:
warnings.warn('None betas for multi-person, will all be the '
'default body shape.')
if transl is not None:
transl = transl.view(poses.shape[0], -1, 3)
if transl.shape[1] == 1:
transl = transl.repeat(1, num_person, 1)
warnings.warn(
'Only one transl for multi-person, will all be the '
'same translation.')
elif transl.shape[1] > num_person:
transl = transl[:, :num_person]
warnings.warn(f'Transl shape exceed, will be sliced as'
f'{transl.shape}.')
elif transl.shape[1] == num_person:
pass
else:
raise ValueError(
f'Odd transl shape: {transl.shape}, inconsistent'
f'with poses in num_person: {poses.shape}.')
else:
warnings.warn('None transl for multi-person, will all be the '
'default translation.')
# slice the input poses, betas, and transl.
betas = betas[start:end] if betas is not None else None
transl = transl[start:end] if transl is not None else None
pose_dict = body_model.tensor2dict(full_pose=full_pose,
betas=betas,
transl=transl)
# get new num_frames
num_frames = full_pose.shape[0]
model_output = body_model(**pose_dict)
vertices = model_output['vertices']
joints = model_output['joints'][0] # hardcode here
elif verts is not None:
if isinstance(verts, np.ndarray):
verts = torch.Tensor(verts)
verts = verts[start:end]
pose_dict = body_model.tensor2dict(torch.zeros(1,
(NUM_JOINTS + 1) * 3))
if verts.ndim == 3:
joints = torch.einsum('bik,ji->bjk',
[verts, body_model.J_regressor])
elif verts.ndim == 4:
joints = torch.einsum('fpik,ji->fpjk',
[verts, body_model.J_regressor])
num_verts = body_model.NUM_VERTS
assert verts.shape[-2] == num_verts, 'Wrong input verts shape.'
num_frames = verts.shape[0]
vertices = verts.view(num_frames, -1, num_verts, 3)
num_joints = joints.shape[-2]
joints = joints.view(num_frames, -1, num_joints, 3)
num_person = vertices.shape[1]
else:
raise ValueError('Poses and verts are all None.')
return vertices, joints, num_frames, num_person
def _prepare_colors(palette, render_choice, num_person, num_verts, model_type):
"""Prepare the `color` as a tensor of shape (num_person, num_verts, 3)
according to `palette`.
This is to make the identity in video clear.
"""
if not len(palette) == num_person:
raise ValueError('Please give the right number of palette.')
body_segger = body_segmentation(model_type)
if render_choice == 'silhouette':
colors = torch.ones(num_person, num_verts, 3)
elif render_choice == 'part_silhouette':
colors = torch.zeros(num_person, num_verts, 3)
for i, k in enumerate(body_segger.keys()):
colors[:, body_segger[k]] = i + 1
else:
if isinstance(palette, torch.Tensor):
if palette.max() > 1:
palette = palette / 255.0
palette = torch.clip(palette, min=0, max=1)
colors = palette.view(num_person,
3).unsqueeze(1).repeat(1, num_verts, 1)
elif isinstance(palette, list):
colors = []
for person_idx in range(num_person):
if palette[person_idx] == 'random':
color_person = get_different_colors(
num_person, int_dtype=False)[person_idx]
color_person = torch.FloatTensor(color_person)
color_person = torch.clip(color_person * 1.5,
min=0.6,
max=1)
color_person = color_person.view(1, 1, 3).repeat(
1, num_verts, 1)
elif palette[person_idx] == 'segmentation':
verts_labels = torch.zeros(num_verts)
color_person = torch.ones(1, num_verts, 3)
color_part = get_different_colors(len(body_segger),
int_dtype=False)
for part_idx, k in enumerate(body_segger.keys()):
index = body_segger[k]
verts_labels[index] = part_idx
color_person[:, index] = torch.FloatTensor(
color_part[part_idx])
elif palette[person_idx] in Color.color_names:
color_person = torch.FloatTensor(
Color(palette[person_idx]).rgb).view(1, 1, 3).repeat(
1, num_verts, 1)
else:
raise ValueError('Wrong palette string. '
'Please choose in the pre-defined range.')
colors.append(color_person)
colors = torch.cat(colors, 0)
assert colors.shape == (num_person, num_verts, 3)
# the color passed to renderer will be (num_person, num_verts, 3)
else:
raise ValueError(
'Palette should be tensor, array or list of strs.')
return colors
def render_smpl(
# smpl parameters
poses: Optional[Union[torch.Tensor, np.ndarray, dict]] = None,
betas: Optional[Union[torch.Tensor, np.ndarray]] = None,
transl: Optional[Union[torch.Tensor, np.ndarray]] = None,
verts: Optional[Union[torch.Tensor, np.ndarray]] = None,
body_model: Optional[nn.Module] = None,
body_model_config: Optional[dict] = None,
# camera parameters
R: Optional[Union[torch.Tensor, np.ndarray]] = None,
T: Optional[Union[torch.Tensor, np.ndarray]] = None,
K: Optional[Union[torch.Tensor, np.ndarray]] = None,
orig_cam: Optional[Union[torch.Tensor, np.ndarray]] = None,
Ks: Optional[Union[torch.Tensor, np.ndarray]] = None,
in_ndc: bool = True,
convention: str = 'pytorch3d',
projection: Literal['weakperspective', 'perspective', 'fovperspective',
'orthographics',
'fovorthographics'] = 'perspective',
orbit_speed: Union[float, Tuple[float, float]] = 0.0,
# render choice parameters
render_choice: Literal['lq', 'mq', 'hq', 'silhouette', 'depth',
'normal', 'pointcloud',
'part_silhouette'] = 'hq',
palette: Union[List[str], str, np.ndarray, torch.Tensor] = 'white',
texture_image: Union[torch.Tensor, np.ndarray] = None,
resolution: Optional[Union[List[int], Tuple[int, int]]] = None,
start: int = 0,
end: Optional[int] = None,
alpha: float = 1.0,
no_grad: bool = True,
batch_size: int = 10,
device: Union[torch.device, str] = 'cuda',
# file io parameters
return_tensor: bool = False,
output_path: str = None,
origin_frames: Optional[str] = None,
frame_list: Optional[List[str]] = None,
image_array: Optional[Union[np.ndarray, torch.Tensor]] = None,
img_format: str = '%06d.png',
overwrite: bool = False,
mesh_file_path: Optional[str] = None,
read_frames_batch: bool = False,
# visualize keypoints
plot_kps: bool = False,
kp3d: Optional[Union[np.ndarray, torch.Tensor]] = None,
mask: Optional[Union[np.ndarray, List[int]]] = None,
vis_kp_index: bool = False,
verbose: bool = False) -> Union[None, torch.Tensor]:
"""Render SMPL or SMPL-X mesh or silhouette into differentiable tensors,
and export video or images.
Args:
# smpl parameters:
poses (Union[torch.Tensor, np.ndarray, dict]):
1). `tensor` or `array` and ndim is 2, shape should be
(frame, 72).
2). `tensor` or `array` and ndim is 3, shape should be
(frame, num_person, 72/165). num_person equals 1 means
single-person.
Rendering predicted multi-person should feed together with
multi-person weakperspective cameras. meshes would be computed
and use an identity intrinsic matrix.
3). `dict`, standard dict format defined in smplx.body_models.
will be treated as single-person.
Lower priority than `verts`.
Defaults to None.
betas (Optional[Union[torch.Tensor, np.ndarray]], optional):
1). ndim is 2, shape should be (frame, 10).
2). ndim is 3, shape should be (frame, num_person, 10). num_person
equals 1 means single-person. If poses are multi-person, betas
should be set to the same person number.
None will use default betas.
Defaults to None.
transl (Optional[Union[torch.Tensor, np.ndarray]], optional):
translations of smpl(x).
1). ndim is 2, shape should be (frame, 3).
2). ndim is 3, shape should be (frame, num_person, 3). num_person
equals 1 means single-person. If poses are multi-person,
transl should be set to the same person number.
Defaults to None.
verts (Optional[Union[torch.Tensor, np.ndarray]], optional):
1). ndim is 3, shape should be (frame, num_verts, 3).
2). ndim is 4, shape should be (frame, num_person, num_verts, 3).
num_person equals 1 means single-person.
Higher priority over `poses` & `betas` & `transl`.
Defaults to None.
body_model (nn.Module, optional): body_model created from smplx.create.
Higher priority than `body_model_config`. If `body_model` is not
None, it will override `body_model_config`.
Should not both be None.
Defaults to None.
body_model_config (dict, optional): body_model_config for build_model.
Lower priority than `body_model`. Should not both be None.
Defaults to None.
# camera parameters:
K (Optional[Union[torch.Tensor, np.ndarray]], optional):
shape should be (frame, 4, 4) or (frame, 3, 3), frame could be 1.
if (4, 4) or (3, 3), dim 0 will be added automatically.
Will be default `FovPerspectiveCameras` intrinsic if None.
Lower priority than `orig_cam`.
R (Optional[Union[torch.Tensor, np.ndarray]], optional):
shape should be (frame, 3, 3), If f equals 1, camera will have
identical rotation.
If `K` and `orig_cam` is None, will be generated by `look_at_view`.
If have `K` or `orig_cam` and `R` is None, will be generated by
`convert_camera_matrix`.
Defaults to None.
T (Optional[Union[torch.Tensor, np.ndarray]], optional):
shape should be (frame, 3). If f equals 1, camera will have
identical translation.
If `K` and `orig_cam` is None, will be generated by `look_at_view`.
If have `K` or `orig_cam` and `T` is None, will be generated by
`convert_camera_matrix`.
Defaults to None.
orig_cam (Optional[Union[torch.Tensor, np.ndarray]], optional):
shape should be (frame, 4) or (frame, num_person, 4). If f equals
1, will be repeated to num_frames. num_person should be 1 if single
person. Usually for HMR, VIBE predicted cameras.
Higher priority than `K` & `R` & `T`.
Defaults to None.
Ks (Optional[Union[torch.Tensor, np.ndarray]], optional):
shape should be (frame, 4, 4).
This is for HMR or SPIN multi-person demo.
in_ndc (bool, optional): . Defaults to True.
convention (str, optional): If want to use an existing convention,
choose in ['opengl', 'opencv', 'pytorch3d', 'pyrender', 'open3d',
'maya', 'blender', 'unity'].
If want to use a new convention, define your convention in
(CAMERA_CONVENTION_FACTORY)[mmhuman3d/core/conventions/cameras/
__init__.py] by the order of right, front and up.
Defaults to 'pytorch3d'.
projection (Literal[, optional): projection mode of camers. Choose in
['orthographics, fovperspective', 'perspective', 'weakperspective',
'fovorthographics']
Defaults to 'perspective'.
orbit_speed (float, optional): orbit speed for viewing when no `K`
provided. `float` for only azim speed and Tuple for `azim` and
`elev`.
# render choice parameters:
render_choice (Literal[, optional):
choose in ['lq', 'mq', 'hq', 'silhouette', 'depth', 'normal',
'pointcloud', 'part_silhouette'] .
`lq`, `mq`, `hq` would output (frame, h, w, 4) FloatTensor.
`lq` means low quality, `mq` means medium quality,
h`q means high quality.
`silhouette` would output (frame, h, w) soft binary FloatTensor.
`part_silhouette` would output (frame, h, w, 1) LongTensor.
Every pixel stores a class index.
`depth` will output a depth map of (frame, h, w, 1) FloatTensor
and 'normal' will output a normal map of (frame, h, w, 1).
`pointcloud` will output a (frame, h, w, 4) FloatTensor.
Defaults to 'mq'.
palette (Union[List[str], str, np.ndarray], optional):
color theme str or list of color str or `array`.
1). If use str to represent the color,
should choose in ['segmentation', 'random'] or color from
Colormap https://en.wikipedia.org/wiki/X11_color_names.
If choose 'segmentation', will get a color for each part.
2). If you have multi-person, better give a list of str or all
will be in the same color.
3). If you want to define your specific color, use an `array`
of shape (3,) for single person and (N, 3) for multiple persons.
If (3,) for multiple persons, all will be in the same color.
Your `array` should be in range [0, 255] for 8 bit color.
Defaults to 'white'.
texture_image (Union[torch.Tensor, np.ndarray], optional):
Texture image to be wrapped on the smpl mesh. If not None,
the `palette` will be ignored, and the `body_model` is required
to have `uv_param_path`.
Should pass list or tensor of shape (num_person, H, W, 3).
The color channel should be `RGB`.
Defaults to None.
resolution (Union[Iterable[int], int], optional):
1). If iterable, should be (height, width) of output images.
2). If int, would be taken as (resolution, resolution).
Defaults to (1024, 1024).
This will influence the overlay results when render with
backgrounds. The output video will be rendered following the
size of background images and finally resized to resolution.
start (int, optional): start frame index. Defaults to 0.
end (int, optional): end frame index. Exclusive.
Could be positive int or negative int or None.
None represents include all the frames.
Defaults to None.
alpha (float, optional): Transparency of the mesh.
Range in [0.0, 1.0]
Defaults to 1.0.
no_grad (bool, optional): Set to True if do not need differentiable
render.
Defaults to False.
batch_size (int, optional): Batch size for render.
Related to your gpu memory.
Defaults to 10.
# file io parameters:
return_tensor (bool, optional): Whether return the result tensors.
Defaults to False, will return None.
output_path (str, optional): output video or gif or image folder.
Defaults to None, pass export procedure.
# background frames, priority: image_array > frame_list > origin_frames
origin_frames (Optional[str], optional): origin background frame path,
could be `.mp4`, `.gif`(will be sliced into a folder) or an image
folder.
Defaults to None.
frame_list (Optional[List[str]], optional): list of origin background
frame paths, element in list each should be a image path like
`*.jpg` or `*.png`.
Use this when your file names is hard to sort or you only want to
render a small number frames.
Defaults to None.
image_array: (Optional[Union[np.ndarray, torch.Tensor]], optional):
origin background frame `tensor` or `array`, use this when you
want your frames in memory as array or tensor.
overwrite (bool, optional): whether overwriting the existing files.
Defaults to False.
mesh_file_path (bool, optional): the directory path to store the `.ply`
or '.ply' files. Will be named like 'frame_idx_person_idx.ply'.
Defaults to None.
read_frames_batch (bool, optional): Whether read frames by batch.
Set it as True if your video is large in size.
Defaults to False.
# visualize keypoints
plot_kps (bool, optional): whether plot keypoints on the output video.
Defaults to False.
kp3d (Optional[Union[np.ndarray, torch.Tensor]], optional):
the keypoints of any convention, should pass `mask` if have any
none-sense points. Shape should be (frame, )
Defaults to None.
mask (Optional[Union[np.ndarray, List[int]]], optional):
Mask of keypoints existence.
Defaults to None.
vis_kp_index (bool, optional):
Whether plot keypoint index number on human mesh.
Defaults to False.
# visualize render progress
verbose (bool, optional):
Whether print the progress bar for rendering.
Returns:
Union[None, torch.Tensor]: return the rendered image tensors or None.
"""
# initialize the device
device = torch.device(device) if isinstance(device, str) else device
if isinstance(resolution, int):
resolution = (resolution, resolution)
elif isinstance(resolution, list):
resolution = tuple(resolution)
verts, poses, betas, transl = _prepare_input_pose(verts, poses, betas,
transl)
body_model = _prepare_body_model(body_model, body_model_config)
model_type = body_model.name().replace('-', '').lower()
assert model_type in ['smpl', 'smplx']
vertices, joints, num_frames, num_person = _prepare_mesh(
poses, betas, transl, verts, start, end, body_model)
end = num_frames if end is None else end
vertices = vertices.view(num_frames, num_person, -1, 3)
num_verts = vertices.shape[-2]
if not plot_kps:
joints = None
if kp3d is not None:
warnings.warn('`plot_kps` is False, `kp3d` will be set as None.')
kp3d = None
image_array, remove_folder, frames_folder = _prepare_background(
image_array, frame_list, origin_frames, output_path, start, end,
img_format, overwrite, num_frames, read_frames_batch)
render_resolution = None
if image_array is not None:
render_resolution = (image_array.shape[1], image_array.shape[2])
elif frames_folder is not None:
frame_path_list = glob.glob(osp.join(
frames_folder, '*.jpg')) + glob.glob(
osp.join(frames_folder, '*.png')) + glob.glob(
osp.join(frames_folder, '*.jpeg'))
vid_info = vid_info_reader(frame_path_list[0])
render_resolution = (int(vid_info['height']), int(vid_info['width']))
if resolution is not None:
if render_resolution is not None:
if render_resolution != resolution:
warnings.warn(
f'Size of background: {render_resolution} !='
f' resolution: {resolution}, the output video will be '
f'resized as {resolution}')
final_resolution = resolution
elif render_resolution is None:
render_resolution = final_resolution = resolution
elif resolution is None:
if render_resolution is None:
render_resolution = final_resolution = (1024, 1024)
elif render_resolution is not None:
final_resolution = render_resolution
if isinstance(kp3d, np.ndarray):
kp3d = torch.Tensor(kp3d)
if kp3d is not None:
if mask is not None:
map_index = np.where(np.array(mask) != 0)[0]
kp3d = kp3d[map_index.tolist()]
kp3d = kp3d[start:end]
kp3d = kp3d.view(num_frames, -1, 3)
# prepare render_param_dict
render_param_dict = copy.deepcopy(RENDER_CONFIGS[render_choice.lower()])
if model_type == 'smpl':
render_param_dict.update(num_class=24)
elif model_type == 'smplx':
render_param_dict.update(num_class=27)
if render_choice not in [
'hq', 'mq', 'lq', 'silhouette', 'part_silhouette', 'depth',
'pointcloud', 'normal'
]:
raise ValueError('Please choose the right render_choice.')
# body part colorful visualization should use flat shader to be sharper.
if texture_image is None:
if isinstance(palette, str):
palette = [palette] * num_person
elif isinstance(palette, np.ndarray):
palette = torch.Tensor(palette)
palette = palette.view(-1, 3)
if palette.shape[0] != num_person:
_times = num_person // palette.shape[0]
palette = palette.repeat(_times, 1)[:num_person]
if palette.shape[0] == 1:
print(f'Same color for all the {num_person} people')
else:
print('Repeat palette for multi-person.')
else:
raise ValueError('Wrong input palette type. '
'Palette should be tensor, array or list of strs')
colors_all = _prepare_colors(palette, render_choice, num_person,
num_verts, model_type)
colors_all = colors_all.view(-1, num_person * num_verts, 3)
# verts of ParametricMeshes should be in (N, V, 3)
vertices = vertices.view(num_frames, -1, 3)
meshes = ParametricMeshes(
body_model=body_model,
verts=vertices,
N_individual_overdide=num_person,
model_type=model_type,
texture_image=texture_image,
use_nearest=bool(render_choice == 'part_silhouette'),
vertex_color=colors_all)
# write .ply or .obj files
if mesh_file_path is not None:
mmcv.mkdir_or_exist(mesh_file_path)
for person_idx in range(meshes.shape[1]):
mesh_person = meshes[:, person_idx]
if texture_image is None:
ply_paths = [
f'{mesh_file_path}/frame{frame_idx}_'
f'person{person_idx}.ply'
for frame_idx in range(num_frames)
]
save_meshes_as_plys(meshes=mesh_person, files=ply_paths)
else:
obj_paths = [
f'{mesh_file_path}/frame{frame_idx}_'
f'person{person_idx}.obj'
for frame_idx in range(num_frames)
]
save_meshes_as_objs(meshes=mesh_person, files=obj_paths)
vertices = meshes.verts_padded().view(num_frames, num_person, -1, 3)
# prepare camera matrixs
if Ks is not None:
projection = 'perspective'
orig_cam = None
if isinstance(Ks, np.ndarray):
Ks = torch.Tensor(Ks)
Ks = Ks.view(-1, num_person, 3, 3)
Ks = Ks[start:end]
Ks = Ks.view(-1, 3, 3)
K = K.repeat(num_frames * num_person, 1, 1)
Ks = K.inverse() @ Ks @ K
vertices = vertices.view(num_frames * num_person, -1, 3)
if T is None:
T = torch.zeros(num_frames, num_person, 1, 3)
elif isinstance(T, np.ndarray):
T = torch.Tensor(T)
T = T[start:end]
T = T.view(num_frames * num_person, 1, 3)
vertices = torch.einsum('blc,bvc->bvl', Ks, vertices + T)
R = None
T = None
vertices = vertices.view(num_frames, num_person, -1, 3)
if orig_cam is not None:
if isinstance(orig_cam, np.ndarray):
orig_cam = torch.Tensor(orig_cam)
projection = 'weakperspective'
r = render_resolution[1] / render_resolution[0]
orig_cam = orig_cam[start:end]
orig_cam = orig_cam.view(num_frames, num_person, 4)
# if num_person > 1:
sx, sy, tx, ty = torch.unbind(orig_cam, -1)
vertices[..., 0] += tx.view(num_frames, num_person, 1)
vertices[..., 1] += ty.view(num_frames, num_person, 1)
vertices[..., 0] *= sx.view(num_frames, num_person, 1)
vertices[..., 1] *= sy.view(num_frames, num_person, 1)
orig_cam = torch.tensor([1.0, 1.0, 0.0,
0.0]).view(1, 4).repeat(num_frames, 1)
K, R, T = WeakPerspectiveCameras.convert_orig_cam_to_matrix(
orig_cam=orig_cam,
znear=torch.min(vertices[..., 2] - 1),
aspect_ratio=r)
if num_person > 1:
vertices = vertices.reshape(num_frames, -1, 3)
else:
vertices = vertices.view(num_frames, -1, 3)
meshes = meshes.update_padded(new_verts_padded=vertices)
# orig_cam and K are None, use look_at_view
if K is None:
projection = 'fovperspective'
K, R, T = compute_orbit_cameras(at=(torch.mean(vertices.view(-1, 3),
0)).detach().cpu(),
orbit_speed=orbit_speed,
batch_size=num_frames,
convention=convention)
convention = 'pytorch3d'
if isinstance(R, np.ndarray):
R = torch.Tensor(R).view(-1, 3, 3)
elif isinstance(R, torch.Tensor):
R = R.view(-1, 3, 3)
elif isinstance(R, list):
R = torch.Tensor(R).view(-1, 3, 3)
elif R is None:
pass
else:
raise ValueError(f'Wrong type of R: {type(R)}!')
if R is not None:
if len(R) > num_frames:
R = R[start:end]
if isinstance(T, np.ndarray):
T = torch.Tensor(T).view(-1, 3)
elif isinstance(T, torch.Tensor):
T = T.view(-1, 3)
elif isinstance(T, list):
T = torch.Tensor(T).view(-1, 3)
elif T is None:
pass
else:
raise ValueError(f'Wrong type of T: {type(T)}!')
if T is not None:
if len(T) > num_frames:
T = T[start:end]
if isinstance(K, np.ndarray):
K = torch.Tensor(K).view(-1, K.shape[-2], K.shape[-1])
elif isinstance(K, torch.Tensor):
K = K.view(-1, K.shape[-2], K.shape[-1])
elif isinstance(K, list):
K = torch.Tensor(K)
K = K.view(-1, K.shape[-2], K.shape[-1])
else:
raise ValueError(f'Wrong type of K: {type(K)}!')
if K is not None:
if len(K) > num_frames:
K = K[start:end]
assert projection in [
'perspective', 'weakperspective', 'orthographics', 'fovorthographics',
'fovperspective'
], f'Wrong camera projection: {projection}'
if projection in ['fovperspective', 'perspective']:
is_perspective = True
elif projection in [
'fovorthographics', 'weakperspective', 'orthographics'
]:
is_perspective = False
if projection in ['fovperspective', 'fovorthographics', 'weakperspective']:
assert in_ndc
K, R, T = convert_camera_matrix(convention_dst='pytorch3d',
K=K,
R=R,
T=T,
is_perspective=is_perspective,
convention_src=convention,
resolution_src=render_resolution,
in_ndc_src=in_ndc,
in_ndc_dst=in_ndc)
# initialize the renderer.
renderer = SMPLRenderer(resolution=render_resolution,
device=device,
output_path=output_path,
return_tensor=return_tensor,
alpha=alpha,
read_img_format=img_format,
render_choice=render_choice,
frames_folder=frames_folder,
plot_kps=plot_kps,
vis_kp_index=vis_kp_index,
final_resolution=final_resolution,
**render_param_dict)
cameras = build_cameras(
dict(type=projection,
in_ndc=in_ndc,
device=device,
K=K,
R=R,
T=T,
resolution=render_resolution))
if image_array is not None:
image_array = torch.Tensor(image_array)
image_array = align_input_to_padded(image_array,
ndim=4,
batch_size=num_frames,
padding_mode='ones')
# prepare the render data.
render_data = dict(
images=image_array,
meshes=meshes,
cameras=cameras,
joints=joints,
joints_gt=kp3d,
)
results = render_runner.render(renderer=renderer,
device=device,
batch_size=batch_size,
output_path=output_path,
return_tensor=return_tensor,
no_grad=no_grad,
verbose=verbose,
**render_data)
if remove_folder:
if Path(frames_folder).is_dir():
shutil.rmtree(frames_folder)
if return_tensor:
return results
else:
return None
def visualize_smpl_calibration(
K,
R,
T,
resolution,
**kwargs,
) -> None:
"""Visualize a smpl mesh which has opencv calibration matrix defined in
screen."""
assert K is not None, '`K` is required.'
assert resolution is not None, '`resolution`(h, w) is required.'
func = partial(render_smpl,
projection='perspective',
convention='opencv',
orig_cam=None,
in_ndc=False)
for k in func.keywords.keys():
if k in kwargs:
kwargs.pop(k)
return func(K=K, R=R, T=T, resolution=resolution, **kwargs)
def visualize_smpl_hmr(cam_transl,
bbox=None,
kp2d=None,
focal_length=5000,
det_width=224,
det_height=224,
bbox_format='xyxy',
**kwargs) -> None:
"""Simplest way to visualize HMR or SPIN or Smplify pred smpl with origin
frames and predicted cameras."""
if kp2d is not None:
bbox = convert_kp2d_to_bbox(kp2d, bbox_format=bbox_format)
Ks = convert_bbox_to_intrinsic(bbox, bbox_format=bbox_format)
K = torch.Tensor(
get_default_hmr_intrinsic(focal_length=focal_length,
det_height=det_height,
det_width=det_width))
func = partial(
render_smpl,
projection='perspective',
convention='opencv',
in_ndc=False,
K=None,
R=None,
orig_cam=None,
)
if isinstance(cam_transl, np.ndarray):
cam_transl = torch.Tensor(cam_transl)
T = torch.cat([
cam_transl[..., [1]], cam_transl[..., [2]], 2 * focal_length /
(det_width * cam_transl[..., [0]] + 1e-9)
], -1)
for k in func.keywords.keys():
if k in kwargs:
kwargs.pop(k)
return func(Ks=Ks, K=K, T=T, **kwargs)
def visualize_smpl_vibe(orig_cam=None,
pred_cam=None,
bbox=None,
output_path='sample.mp4',
resolution=None,
aspect_ratio=1.0,
bbox_scale_factor=1.25,
bbox_format='xyxy',
**kwargs) -> None:
"""Simplest way to visualize pred smpl with origin frames and predicted
cameras."""
assert resolution is not None
if pred_cam is not None and bbox is not None:
orig_cam = torch.Tensor(
convert_crop_cam_to_orig_img(pred_cam, bbox, resolution[1],
resolution[0], aspect_ratio,
bbox_scale_factor, bbox_format))
assert orig_cam is not None, '`orig_cam` is required.'
func = partial(
render_smpl,
projection='weakperspective',
convention='opencv',
in_ndc=True,
)
for k in func.keywords.keys():
if k in kwargs:
kwargs.pop(k)
return func(orig_cam=orig_cam,
output_path=output_path,
resolution=resolution,
**kwargs)
def visualize_T_pose(num_frames,
body_model_config=None,
body_model=None,
orbit_speed=1.0,
**kwargs) -> None:
"""Simplest way to visualize a sequence of T pose."""
assert num_frames > 0, '`num_frames` is required.'
assert body_model_config is not None or body_model is not None
model_type = body_model_config[
'type'] if body_model_config is not None else body_model.name(
).replace('-', '').lower()
if model_type == 'smpl':
poses = torch.zeros(num_frames, 72)
else:
poses = torch.zeros(num_frames, 165)
func = partial(render_smpl,
betas=None,
transl=None,
verts=None,
convention='pytorch3d',
projection='fovperspective',
K=None,
R=None,
T=None,
origin_frames=None)
for k in func.keywords.keys():
if k in kwargs:
kwargs.pop(k)
return func(poses=poses,
body_model_config=body_model_config,
body_model=body_model,
orbit_speed=orbit_speed,
**kwargs)
def visualize_smpl_pose(poses=None, verts=None, **kwargs) -> None:
"""Simplest way to visualize a sequence of smpl pose.
Cameras will focus on the center of smpl mesh. `orbit speed` is
recommended.
"""
assert (poses
is not None) or (verts
is not None), 'Pass either `poses` or `verts`.'
func = partial(render_smpl,
convention='opencv',
projection='fovperspective',
K=None,
R=None,
T=None,
in_ndc=True,
origin_frames=None,
frame_list=None,
image_array=None)
for k in func.keywords.keys():
if k in kwargs:
kwargs.pop(k)
return func(poses=poses, verts=verts, **kwargs)