Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
import tempfile | |
import warnings | |
from mmcv.runner import DistEvalHook as BaseDistEvalHook | |
from mmcv.runner import EvalHook as BaseEvalHook | |
MMHUMAN3D_GREATER_KEYS = ['3dpck', 'pa-3dpck', '3dauc', 'pa-3dauc'] | |
MMHUMAN3D_LESS_KEYS = ['mpjpe', 'pa-mpjpe', 'pve'] | |
class EvalHook(BaseEvalHook): | |
def __init__(self, | |
dataloader, | |
start=None, | |
interval=1, | |
by_epoch=True, | |
save_best=None, | |
rule=None, | |
test_fn=None, | |
greater_keys=MMHUMAN3D_GREATER_KEYS, | |
less_keys=MMHUMAN3D_LESS_KEYS, | |
**eval_kwargs): | |
if test_fn is None: | |
from detrsmpl.apis import single_gpu_test | |
test_fn = single_gpu_test | |
# remove "gpu_collect" from eval_kwargs | |
if 'gpu_collect' in eval_kwargs: | |
warnings.warn( | |
'"gpu_collect" will be deprecated in EvalHook.' | |
'Please remove it from the config.', DeprecationWarning) | |
_ = eval_kwargs.pop('gpu_collect') | |
# update "save_best" according to "key_indicator" and remove the | |
# latter from eval_kwargs | |
if 'key_indicator' in eval_kwargs or isinstance(save_best, bool): | |
warnings.warn( | |
'"key_indicator" will be deprecated in EvalHook.' | |
'Please use "save_best" to specify the metric key,' | |
'e.g., save_best="pa-mpjpe".', DeprecationWarning) | |
key_indicator = eval_kwargs.pop('key_indicator', None) | |
if save_best is True and key_indicator is None: | |
raise ValueError('key_indicator should not be None, when ' | |
'save_best is set to True.') | |
save_best = key_indicator | |
super().__init__(dataloader, start, interval, by_epoch, save_best, | |
rule, test_fn, greater_keys, less_keys, **eval_kwargs) | |
def evaluate(self, runner, results): | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
eval_res = self.dataloader.dataset.evaluate(results, | |
res_folder=tmp_dir, | |
logger=runner.logger, | |
**self.eval_kwargs) | |
for name, val in eval_res.items(): | |
runner.log_buffer.output[name] = val | |
runner.log_buffer.ready = True | |
if self.save_best is not None: | |
if self.key_indicator == 'auto': | |
self._init_rule(self.rule, list(eval_res.keys())[0]) | |
return eval_res[self.key_indicator] | |
return None | |
class DistEvalHook(BaseDistEvalHook): | |
def __init__(self, | |
dataloader, | |
start=None, | |
interval=1, | |
by_epoch=True, | |
save_best=None, | |
rule=None, | |
test_fn=None, | |
greater_keys=MMHUMAN3D_GREATER_KEYS, | |
less_keys=MMHUMAN3D_LESS_KEYS, | |
broadcast_bn_buffer=True, | |
tmpdir=None, | |
gpu_collect=False, | |
**eval_kwargs): | |
if test_fn is None: | |
from detrsmpl.apis import multi_gpu_test | |
test_fn = multi_gpu_test | |
# update "save_best" according to "key_indicator" and remove the | |
# latter from eval_kwargs | |
if 'key_indicator' in eval_kwargs or isinstance(save_best, bool): | |
warnings.warn( | |
'"key_indicator" will be deprecated in EvalHook.' | |
'Please use "save_best" to specify the metric key,' | |
'e.g., save_best="pa-mpjpe".', DeprecationWarning) | |
key_indicator = eval_kwargs.pop('key_indicator', None) | |
if save_best is True and key_indicator is None: | |
raise ValueError('key_indicator should not be None, when ' | |
'save_best is set to True.') | |
save_best = key_indicator | |
super().__init__(dataloader, start, interval, by_epoch, save_best, | |
rule, test_fn, greater_keys, less_keys, | |
broadcast_bn_buffer, tmpdir, gpu_collect, | |
**eval_kwargs) | |
def evaluate(self, runner, results): | |
"""Evaluate the results. | |
Args: | |
runner (:obj:`mmcv.Runner`): The underlined training runner. | |
results (list): Output results. | |
""" | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
eval_res = self.dataloader.dataset.evaluate(results, | |
res_folder=tmp_dir, | |
logger=runner.logger, | |
**self.eval_kwargs) | |
for name, val in eval_res.items(): | |
runner.log_buffer.output[name] = val | |
runner.log_buffer.ready = True | |
if self.save_best is not None: | |
if self.key_indicator == 'auto': | |
# infer from eval_results | |
self._init_rule(self.rule, list(eval_res.keys())[0]) | |
return eval_res[self.key_indicator] | |
return None | |