AiOS / mmcv /examples /train.py
ttxskk
update
d7e58f0
raw
history blame
2.8 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10
from mmcv.parallel import MMDataParallel
from mmcv.runner import EpochBasedRunner
from mmcv.utils import get_logger
class Model(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
self.loss_fn = nn.CrossEntropyLoss()
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def train_step(self, data, optimizer):
images, labels = data
predicts = self(images) # -> self.__call__() -> self.forward()
loss = self.loss_fn(predicts, labels)
return {'loss': loss}
if __name__ == '__main__':
model = Model()
if torch.cuda.is_available():
# only use gpu:0 to train
# Solved issue https://github.com/open-mmlab/mmcv/issues/1470
model = MMDataParallel(model.cuda(), device_ids=[0])
# dataset and dataloader
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
trainset = CIFAR10(
root='data', train=True, download=True, transform=transform)
trainloader = DataLoader(
trainset, batch_size=128, shuffle=True, num_workers=2)
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
logger = get_logger('mmcv')
# runner is a scheduler to manage the training
runner = EpochBasedRunner(
model,
optimizer=optimizer,
work_dir='./work_dir',
logger=logger,
max_epochs=4)
# learning rate scheduler config
lr_config = dict(policy='step', step=[2, 3])
# configuration of optimizer
optimizer_config = dict(grad_clip=None)
# configuration of saving checkpoints periodically
checkpoint_config = dict(interval=1)
# save log periodically and multiple hooks can be used simultaneously
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
# register hooks to runner and those hooks will be invoked automatically
runner.register_training_hooks(
lr_config=lr_config,
optimizer_config=optimizer_config,
checkpoint_config=checkpoint_config,
log_config=log_config)
runner.run([trainloader], [('train', 1)])