ttxskk
update
d7e58f0
raw
history blame
52.4 kB
import logging
import pickle
from enum import Enum
from math import ceil
from typing import Any, List, Optional, TypeVar, Union, overload
import numpy as np
import torch
from mmcv.utils import print_log
from detrsmpl.utils.path_utils import (
Existence,
check_path_existence,
check_path_suffix,
)
# In T = TypeVar('T'), T can be anything.
# See definition of typing.TypeVar for details.
_T1 = TypeVar('_T1')
_KT = TypeVar('_KT')
_VT = TypeVar('_VT')
_HumanData = TypeVar('_HumanData')
_CPU_DEVICE = torch.device('cpu')
_HumanData_SUPPORTED_KEYS = {
'image_path': {
'type': list,
},
'image_id': {
'type': list,
},
'bbox_xywh': {
'type': np.ndarray,
'shape': (-1, 5),
'dim': 0
},
'config': {
'type': str,
'dim': None
},
'keypoints2d': {
'type': np.ndarray,
'shape': (-1, -1, 3),
'dim': 0
},
'keypoints3d': {
'type': np.ndarray,
'shape': (-1, -1, 4),
'dim': 0
},
'smpl': {
'type': dict,
'slice_key': 'betas',
'dim': 0
},
'smplh': {
'type': dict,
'slice_key': 'betas',
'dim': 0
},
'smplx': {
'type': dict,
'slice_key': 'betas',
'dim': 0
},
'meta': {
'type': dict,
},
'keypoints2d_mask': {
'type': np.ndarray,
'shape': (-1, ),
'dim': None
},
'keypoints2d_convention': {
'type': str,
'dim': None
},
'keypoints3d_mask': {
'type': np.ndarray,
'shape': (-1, ),
'dim': None
},
'keypoints3d_convention': {
'type': str,
'dim': None
},
'vertices': {
'type': np.ndarray,
'shape': (-1, ),
'dim': None
},
'focal_length': {
'type': np.ndarray,
'shape': (-1, ),
'dim': 0
},
'principal_point': {
'type': np.ndarray,
'shape': (-1, ),
'dim': 0
},
'misc': {
'type': dict,
},
}
class _KeyCheck(Enum):
PASS = 0
WARN = 1
ERROR = 2
class HumanData(dict):
logger = None
SUPPORTED_KEYS = _HumanData_SUPPORTED_KEYS
WARNED_KEYS = []
def __new__(cls: _HumanData, *args: Any, **kwargs: Any) -> _HumanData:
"""New an instance of HumanData.
Args:
cls (HumanData): HumanData class.
Returns:
HumanData: An instance of HumanData.
"""
ret_human_data = super().__new__(cls, args, kwargs)
setattr(ret_human_data, '__data_len__', -1)
setattr(ret_human_data, '__key_strict__', False)
setattr(ret_human_data, '__keypoints_compressed__', False)
return ret_human_data
@classmethod
def set_logger(cls, logger: Union[logging.Logger, str, None] = None):
"""Set logger of HumanData class.
Args:
logger (logging.Logger | str | None, optional):
The way to print summary.
See `mmcv.utils.print_log()` for details.
Defaults to None.
"""
cls.logger = logger
@classmethod
def fromfile(cls, npz_path: str) -> _HumanData:
"""Construct a HumanData instance from an npz file.
Args:
npz_path (str):
Path to a dumped npz file.
Returns:
HumanData:
A HumanData instance load from file.
"""
ret_human_data = cls()
ret_human_data.load(npz_path)
return ret_human_data
@classmethod
def new(cls,
source_dict: dict = None,
key_strict: bool = False) -> _HumanData:
"""Construct a HumanData instance from a dict.
Args:
source_dict (dict, optional):
A dict with items in HumanData fashion.
Defaults to None.
key_strict (bool, optional):
Whether to raise error when setting unsupported keys.
Defaults to False.
Returns:
HumanData:
A HumanData instance.
"""
if source_dict is None:
ret_human_data = cls()
else:
ret_human_data = cls(source_dict)
ret_human_data.set_key_strict(key_strict)
return ret_human_data
def get_key_strict(self) -> bool:
"""Get value of attribute key_strict.
Returns:
bool:
Whether to raise error when setting unsupported keys.
"""
return self.__key_strict__
def set_key_strict(self, value: bool):
"""Set value of attribute key_strict.
Args:
value (bool, optional):
Whether to raise error when setting unsupported keys.
Defaults to True.
"""
former__key_strict__ = self.__key_strict__
self.__key_strict__ = value
if former__key_strict__ is False and \
value is True:
self.pop_unsupported_items()
def check_keypoints_compressed(self) -> bool:
"""Check whether the keypoints are compressed.
Returns:
bool:
Whether the keypoints are compressed.
"""
return self.__keypoints_compressed__
def load(self, npz_path: str):
"""Load data from npz_path and update them to self.
Args:
npz_path (str):
Path to a dumped npz file.
"""
supported_keys = self.__class__.SUPPORTED_KEYS
with np.load(npz_path, allow_pickle=True) as npz_file:
tmp_data_dict = dict(npz_file)
for key, value in list(tmp_data_dict.items()):
if isinstance(value, np.ndarray) and\
len(value.shape) == 0:
# value is not an ndarray before dump
value = value.item()
elif key in supported_keys and\
type(value) != supported_keys[key]['type']:
value = supported_keys[key]['type'](value)
if value is None:
tmp_data_dict.pop(key)
elif key == '__key_strict__' or \
key == '__data_len__' or\
key == '__keypoints_compressed__':
self.__setattr__(key, value)
# pop the attributes to keep dict clean
tmp_data_dict.pop(key)
elif key == 'bbox_xywh' and value.shape[1] == 4:
value = np.hstack([value, np.ones([value.shape[0], 1])])
tmp_data_dict[key] = value
else:
tmp_data_dict[key] = value
self.update(tmp_data_dict)
self.__set_default_values__()
def dump(self, npz_path: str, overwrite: bool = True):
"""Dump keys and items to an npz file.
Args:
npz_path (str):
Path to a dumped npz file.
overwrite (bool, optional):
Whether to overwrite if there is already a file.
Defaults to True.
Raises:
ValueError:
npz_path does not end with '.npz'.
FileExistsError:
When overwrite is False and file exists.
"""
if not check_path_suffix(npz_path, ['.npz']):
raise ValueError('Not an npz file.')
if not overwrite:
if check_path_existence(npz_path, 'file') == Existence.FileExist:
raise FileExistsError
dict_to_dump = {
'__key_strict__': self.__key_strict__,
'__data_len__': self.__data_len__,
'__keypoints_compressed__': self.__keypoints_compressed__,
}
dict_to_dump.update(self)
np.savez_compressed(npz_path, **dict_to_dump)
def get_sliced_cache(self, slice_size=10) -> List:
"""Slice the whole HumanData into pieces for HumanDataCacheWriter.
Args:
slice_size (int, optional):
The length of each unit in HumanData cache.
Defaults to 10.
Returns:
List:
Two dicts for HumanDataCacheWriter.
Init HumanDataCacheWriter by HumanDataCacheWriter(**Returns[0])
and set data by
human_data_cache_writer.update_sliced_dict(Returns[1]).
"""
keypoints_info = {}
non_sliced_data = {}
sliced_data = {}
slice_num = ceil(self.__data_len__ / slice_size)
for slice_index in range(slice_num):
sliced_data[str(slice_index)] = {}
dim_dict = self.__get_slice_dim__()
for key, dim in dim_dict.items():
# no dim to slice
if dim is None:
if key.startswith('keypoints') and\
(key.endswith('_mask') or
key.endswith('_convention')):
keypoints_info[key] = self[key]
else:
non_sliced_data[key] = self[key]
elif isinstance(dim, dict):
value_dict = self.get_raw_value(key)
non_sliced_sub_dict = {}
for sub_key in value_dict.keys():
sub_value = value_dict[sub_key]
if dim[sub_key] is None:
non_sliced_sub_dict[sub_key] = sub_value
else:
sub_dim = dim[sub_key]
for slice_index in range(slice_num):
slice_start = slice_index * slice_size
slice_end = min((slice_index + 1) * slice_size,
self.__data_len__)
slice_range = slice(slice_start, slice_end)
sliced_sub_value = \
HumanData.__get_sliced_result__(
sub_value, sub_dim, slice_range
)
if key not in sliced_data[str(slice_index)]:
sliced_data[str(slice_index)][key] = {}
sliced_data[str(slice_index)][key][sub_key] = \
sliced_sub_value
if len(non_sliced_sub_dict) > 0:
non_sliced_data[key] = non_sliced_sub_dict
else:
value = self.get_raw_value(key)
# slice as ndarray
if isinstance(value, np.ndarray):
slice_list = [
slice(None),
] * len(value.shape)
for slice_index in range(slice_num):
slice_start = slice_index * slice_size
slice_end = min((slice_index + 1) * slice_size,
self.__data_len__)
slice_list[dim] = slice(slice_start, slice_end)
sliced_value = value[tuple(slice_list)]
sliced_data[str(slice_index)][key] = sliced_value
# slice as list/tuple
else:
for slice_index in range(slice_num):
slice_start = slice_index * slice_size
slice_end = min((slice_index + 1) * slice_size,
self.__data_len__)
sliced_value = value[slice(slice_start, slice_end)]
sliced_data[str(slice_index)][key] = sliced_value
writer_args_dict = {
'slice_size': slice_size,
'keypoints_info': keypoints_info,
'data_len': self.data_len,
'non_sliced_data': non_sliced_data,
'key_strict': self.get_key_strict()
}
return writer_args_dict, sliced_data
def to(self,
device: Optional[Union[torch.device, str]] = _CPU_DEVICE,
dtype: Optional[torch.dtype] = None,
non_blocking: Optional[bool] = False,
copy: Optional[bool] = False,
memory_format: Optional[torch.memory_format] = None) -> dict:
"""Convert values in numpy.ndarray type to torch.Tensor, and move
Tensors to the target device. All keys will exist in the returned dict.
Args:
device (Union[torch.device, str], optional):
A specified device. Defaults to CPU_DEVICE.
dtype (torch.dtype, optional):
The data type of the expected torch.Tensor.
If dtype is None, it is decided according to numpy.ndarry.
Defaults to None.
non_blocking (bool, optional):
When non_blocking, tries to convert asynchronously with
respect to the host if possible, e.g.,
converting a CPU Tensor with pinned memory to a CUDA Tensor.
Defaults to False.
copy (bool, optional):
When copy is set, a new Tensor is created even when
the Tensor already matches the desired conversion.
No matter what value copy is, Tensor constructed from numpy
will not share the same memory with the source numpy.ndarray.
Defaults to False.
memory_format (torch.memory_format, optional):
The desired memory format of returned Tensor.
Not supported by pytorch-cpu.
Defaults to None.
Returns:
dict:
A dict with all numpy.ndarray values converted into
torch.Tensor and all Tensors moved to the target device.
"""
ret_dict = {}
for key in self.keys():
raw_value = self.get_raw_value(key)
tensor_value = None
if isinstance(raw_value, np.ndarray):
tensor_value = torch.from_numpy(raw_value).clone()
elif isinstance(raw_value, torch.Tensor):
tensor_value = raw_value
if tensor_value is None:
ret_dict[key] = raw_value
else:
if memory_format is None:
ret_dict[key] = \
tensor_value.to(device, dtype,
non_blocking, copy)
else:
ret_dict[key] = \
tensor_value.to(device, dtype,
non_blocking, copy,
memory_format=memory_format)
return ret_dict
def __getitem__(self, key: _KT) -> _VT:
"""Get value defined by HumanData. This function will be called by
self[key]. In keypoints_compressed mode, if the key contains
'keypoints', an array with zero-padding at absent keypoint will be
returned. Call self.get_raw_value(k) to get value without padding.
Args:
key (_KT):
Key in HumanData.
Returns:
_VT:
Value to the key.
"""
value = super().__getitem__(key)
if self.__keypoints_compressed__:
mask_key = f'{key}_mask'
if key in self and \
isinstance(value, np.ndarray) and \
'keypoints' in key and \
mask_key in self:
mask_array = np.asarray(super().__getitem__(mask_key))
value = \
self.__class__.__add_zero_pad__(value, mask_array)
return value
def get_raw_value(self, key: _KT) -> _VT:
"""Get raw value from the dict. It acts the same as
dict.__getitem__(k).
Args:
key (_KT):
Key in dict.
Returns:
_VT:
Value to the key.
"""
value = super().__getitem__(key)
return value
def get_value_in_shape(self,
key: _KT,
shape: Union[list, tuple],
padding_constant: int = 0) -> np.ndarray:
"""Get value in a specific shape. For each dim, if the required shape
is smaller than current shape, ndarray will be sliced. Otherwise, it
will be padded with padding_constant at the end.
Args:
key (_KT):
Key in dict. The value of this key must be
an instance of numpy.ndarray.
shape (Union[list, tuple]):
Shape of the returned array. Its length
must be equal to value.ndim. Set -1 for
a dimension if you do not want to edit it.
padding_constant (int, optional):
The value to set the padded values for each axis.
Defaults to 0.
Raises:
ValueError:
A value in shape is neither positive integer nor -1.
Returns:
np.ndarray:
An array in required shape.
"""
value = self.get_raw_value(key)
assert isinstance(value, np.ndarray)
assert value.ndim == len(shape)
pad_width_list = []
slice_list = []
for dim_index in range(len(shape)):
if shape[dim_index] == -1:
# no pad or slice
pad_width_list.append((0, 0))
slice_list.append(slice(None))
elif shape[dim_index] > 0:
# valid shape value
wid = shape[dim_index] - value.shape[dim_index]
if wid > 0:
pad_width_list.append((0, wid))
else:
pad_width_list.append((0, 0))
slice_list.append(slice(0, shape[dim_index]))
else:
# invalid
raise ValueError
pad_value = np.pad(value,
pad_width=pad_width_list,
mode='constant',
constant_values=padding_constant)
return pad_value[tuple(slice_list)]
@overload
def get_slice(self, stop: int):
"""Slice [0, stop, 1] of all sliceable values."""
...
@overload
def get_slice(self, start: int, stop: int):
"""Slice [start, stop, 1] of all sliceable values."""
...
@overload
def get_slice(self, start: int, stop: int, step: int):
"""Slice [start, stop, step] of all sliceable values."""
...
def get_slice(self,
arg_0: int,
arg_1: Union[int, Any] = None,
step: int = 1) -> _HumanData:
"""Slice all sliceable values along major_dim dimension.
Args:
arg_0 (int):
When arg_1 is None, arg_0 is stop and start=0.
When arg_1 is not None, arg_0 is start.
arg_1 (Union[int, Any], optional):
None or where to stop.
Defaults to None.
step (int, optional):
Length of step. Defaults to 1.
Returns:
HumanData:
A new HumanData instance with sliced values.
"""
ret_human_data = \
HumanData.new(key_strict=self.get_key_strict())
if arg_1 is None:
start = 0
stop = arg_0
else:
start = arg_0
stop = arg_1
slice_index = slice(start, stop, step)
dim_dict = self.__get_slice_dim__()
for key, dim in dim_dict.items():
# keys not expected be sliced
if dim is None:
ret_human_data[key] = self[key]
elif isinstance(dim, dict):
value_dict = self.get_raw_value(key)
sliced_dict = {}
for sub_key in value_dict.keys():
sub_value = value_dict[sub_key]
if dim[sub_key] is None:
sliced_dict[sub_key] = sub_value
else:
sub_dim = dim[sub_key]
sliced_sub_value = \
HumanData.__get_sliced_result__(
sub_value, sub_dim, slice_index)
sliced_dict[sub_key] = sliced_sub_value
ret_human_data[key] = sliced_dict
else:
value = self[key]
sliced_value = \
HumanData.__get_sliced_result__(
value, dim, slice_index)
ret_human_data[key] = sliced_value
# check keypoints compressed
if self.check_keypoints_compressed():
ret_human_data.compress_keypoints_by_mask()
return ret_human_data
def __get_slice_dim__(self) -> dict:
"""For each key in this HumanData, get the dimension for slicing. 0 for
default, if no other value specified.
Returns:
dict:
Keys are self.keys().
Values indicate where to slice.
None for not expected to be sliced or
failed.
"""
supported_keys = self.__class__.SUPPORTED_KEYS
ret_dict = {}
for key in self.keys():
# keys not expected be sliced
if key in supported_keys and \
'dim' in supported_keys[key] and \
supported_keys[key]['dim'] is None:
ret_dict[key] = None
else:
value = self[key]
if isinstance(value, dict) and len(value) > 0:
ret_dict[key] = {}
for sub_key in value.keys():
try:
sub_value_len = len(value[sub_key])
if sub_value_len != self.__data_len__:
ret_dict[key][sub_key] = None
elif 'dim' in value:
ret_dict[key][sub_key] = value['dim']
else:
ret_dict[key][sub_key] = 0
except TypeError:
ret_dict[key][sub_key] = None
continue
# instance cannot be sliced without len method
try:
value_len = len(value)
except TypeError:
ret_dict[key] = None
continue
# slice on dim 0 by default
slice_dim = 0
if key in supported_keys and \
'dim' in supported_keys[key]:
slice_dim = \
supported_keys[key]['dim']
data_len = value_len if slice_dim == 0 \
else value.shape[slice_dim]
# dim not for slice
if data_len != self.__data_len__:
ret_dict[key] = None
continue
else:
ret_dict[key] = slice_dim
return ret_dict
def __setitem__(self, key: _KT, val: _VT) -> None:
"""Set self[key] to value. Only be called when using
human_data[key] = val. Methods like update won't call __setitem__.
In keypoints_compressed mode, if the key contains 'keypoints',
and f'{key}_mask' is in self.keys(), invalid zeros
will be removed before setting value.
Args:
key (_KT):
Key in HumanData.
Better be an element in HumanData.SUPPORTED_KEYS.
If not, an Error will be raised in key_strict mode.
val (_VT):
Value to the key.
Raises:
KeyError:
self.get_key_strict() is True and
key cannot be found in
HumanData.SUPPORTED_KEYS.
ValueError:
Value is supported but doesn't match definition.
ValueError:
self.check_keypoints_compressed() is True and
mask of a keypoint item is missing.
"""
self.__check_key__(key)
self.__check_value__(key, val)
# if it can be compressed by mask
if self.__keypoints_compressed__:
class_logger = self.__class__.logger
if 'keypoints' in key and \
'_mask' in key:
msg = 'Mask cannot be modified ' +\
'in keypoints_compressed mode.'
print_log(msg=msg, logger=class_logger, level=logging.WARN)
return
elif isinstance(val, np.ndarray) and \
'keypoints' in key and \
'_mask' not in key:
mask_key = f'{key}_mask'
if mask_key in self:
mask_array = np.asarray(super().__getitem__(mask_key))
val = \
self.__class__.__remove_zero_pad__(val, mask_array)
else:
msg = f'Mask for {key} has not been set.' +\
f' Please set {mask_key} before compression.'
print_log(msg=msg,
logger=class_logger,
level=logging.ERROR)
raise ValueError
dict.__setitem__(self, key, val)
def set_raw_value(self, key: _KT, val: _VT) -> None:
"""Set the raw value of self[key] to val after key check. It acts the
same as dict.__setitem__(self, key, val) if the key satisfied
constraints.
Args:
key (_KT):
Key in dict.
val (_VT):
Value to the key.
Raises:
KeyError:
self.get_key_strict() is True and
key cannot be found in
HumanData.SUPPORTED_KEYS.
ValueError:
Value is supported but doesn't match definition.
"""
self.__check_key__(key)
self.__check_value__(key, val)
dict.__setitem__(self, key, val)
def pop_unsupported_items(self) -> None:
"""Find every item with a key not in HumanData.SUPPORTED_KEYS, and pop
it to save memory."""
for key in list(self.keys()):
if key not in self.__class__.SUPPORTED_KEYS:
self.pop(key)
def __check_key__(self, key: Any) -> _KeyCheck:
"""Check whether the key matches definition in
HumanData.SUPPORTED_KEYS.
Args:
key (Any):
Key in HumanData.
Returns:
_KeyCheck:
PASS, WARN or ERROR.
Raises:
KeyError:
self.get_key_strict() is True and
key cannot be found in
HumanData.SUPPORTED_KEYS.
"""
ret_key_check = _KeyCheck.PASS
if self.get_key_strict():
if key not in self.__class__.SUPPORTED_KEYS:
ret_key_check = _KeyCheck.ERROR
else:
if key not in self.__class__.SUPPORTED_KEYS and \
key not in self.__class__.WARNED_KEYS:
# log warning message at the first time
ret_key_check = _KeyCheck.WARN
self.__class__.WARNED_KEYS.append(key)
if ret_key_check == _KeyCheck.ERROR:
raise KeyError(self.__class__.__get_key_error_msg__(key))
elif ret_key_check == _KeyCheck.WARN:
class_logger = self.__class__.logger
if class_logger == 'silent':
pass
else:
print_log(msg=self.__class__.__get_key_warn_msg__(key),
logger=class_logger,
level=logging.WARN)
return ret_key_check
def __check_value__(self, key: Any, val: Any) -> bool:
"""Check whether the value matches definition in
HumanData.SUPPORTED_KEYS.
Args:
key (Any):
Key in HumanData.
val (Any):
Value to the key.
Returns:
bool:
True for matched, ortherwise False.
Raises:
ValueError:
Value is supported but doesn't match definition.
"""
ret_bool = self.__check_value_type__(key, val) and\
self.__check_value_shape__(key, val) and\
self.__check_value_len__(key, val)
if not ret_bool:
raise ValueError(self.__class__.__get_value_error_msg__())
return ret_bool
def __check_value_type__(self, key: Any, val: Any) -> bool:
"""Check whether the type of val matches definition in
HumanData.SUPPORTED_KEYS.
Args:
key (Any):
Key in HumanData.
val (Any):
Value to the key.
Returns:
bool:
If type doesn't match, return False.
Else return True.
"""
ret_bool = True
supported_keys = self.__class__.SUPPORTED_KEYS
# check definition
if key in supported_keys:
# check type
if type(val) != supported_keys[key]['type']:
ret_bool = False
if not ret_bool:
expected_type = supported_keys[key]['type']
err_msg = 'Type check Failed:\n'
err_msg += f'key={str(key)}\n'
err_msg += f'type(val)={type(val)}\n'
err_msg += f'expected type={expected_type}\n'
print_log(msg=err_msg,
logger=self.__class__.logger,
level=logging.ERROR)
return ret_bool
def __check_value_shape__(self, key: Any, val: Any) -> bool:
"""Check whether the shape of val matches definition in
HumanData.SUPPORTED_KEYS.
Args:
key (Any):
Key in HumanData.
val (Any):
Value to the key.
Returns:
bool:
If expected shape is defined and doesn't match,
return False.
Else return True.
"""
ret_bool = True
supported_keys = self.__class__.SUPPORTED_KEYS
# check definition
if key in supported_keys:
# check shape
if 'shape' in supported_keys[key]:
val_shape = val.shape
for shape_ind in range(len(supported_keys[key]['shape'])):
# length not match
if shape_ind >= len(val_shape):
ret_bool = False
break
expect_val = supported_keys[key]['shape'][shape_ind]
# value not match
if expect_val > 0 and \
expect_val != val_shape[shape_ind]:
ret_bool = False
break
if not ret_bool:
expected_shape = str(supported_keys[key]['shape'])
expected_shape = expected_shape.replace('-1', 'Any')
err_msg = 'Shape check Failed:\n'
err_msg += f'key={str(key)}\n'
err_msg += f'val.shape={val_shape}\n'
err_msg += f'expected shape={expected_shape}\n'
print_log(msg=err_msg,
logger=self.__class__.logger,
level=logging.ERROR)
return ret_bool
@property
def data_len(self) -> int:
"""Get the temporal length of this HumanData instance.
Returns:
int:
Number of frames related to this instance.
"""
return self.__data_len__
@data_len.setter
def data_len(self, value: int):
"""Set the temporal length of this HumanData instance.
Args:
value (int):
Number of frames related to this instance.
"""
self.__data_len__ = value
def __check_value_len__(self, key: Any, val: Any) -> bool:
"""Check whether the temporal length of val matches other values.
Args:
key (Any):
Key in HumanData.
val (Any):
Value to the key.
Returns:
bool:
If temporal dim is defined and temporal length doesn't match,
return False.
Else return True.
"""
ret_bool = True
supported_keys = self.__class__.SUPPORTED_KEYS
# check definition
if key in supported_keys:
# check temporal length
if 'dim' in supported_keys[key] and \
supported_keys[key]['dim'] is not None:
val_slice_dim = supported_keys[key]['dim']
if supported_keys[key]['type'] == dict:
slice_key = supported_keys[key]['slice_key']
val_data_len = val[slice_key].shape[val_slice_dim]
else:
val_data_len = val.shape[val_slice_dim]
if self.data_len < 0:
# no data_len yet, assign a new one
self.data_len = val_data_len
else:
# check if val_data_len matches recorded data_len
if self.data_len != val_data_len:
ret_bool = False
if not ret_bool:
err_msg = 'Temporal check Failed:\n'
err_msg += f'key={str(key)}\n'
err_msg += f'val\'s data_len={val_data_len}\n'
err_msg += f'expected data_len={self.data_len}\n'
print_log(msg=err_msg,
logger=self.__class__.logger,
level=logging.ERROR)
return ret_bool
def generate_mask_from_confidence(self, keys=None) -> None:
"""Generate mask from keypoints' confidence. Keypoints that have zero
confidence in all occurrences will have a zero mask. Note that the last
value of the keypoint is assumed to be confidence.
Args:
keys: None, str, or list of str.
None: all keys with `keypoint` in it will have mask
generated from their confidence.
str: key of the keypoint, the mask has name f'{key}_name'
list of str: a list of keys of the keypoints.
Generate mask for multiple keypoints.
Defaults to None.
Returns:
None
Raises:
KeyError:
A key is not not found
"""
if keys is None:
keys = []
for key in self.keys():
val = self.get_raw_value(key)
if isinstance(val, np.ndarray) and \
'keypoints' in key and \
'_mask' not in key:
keys.append(key)
elif isinstance(keys, str):
keys = [keys]
elif isinstance(keys, list):
for key in keys:
assert isinstance(key, str)
else:
raise TypeError(f'`Keys` must be None, str, or list of str, '
f'got {type(keys)}.')
update_dict = {}
for kpt_key in keys:
kpt_array = self.get_raw_value(kpt_key)
num_joints = kpt_array.shape[-2]
# if all conf of a joint are zero, this joint is masked
joint_conf = kpt_array[..., -1].reshape(-1, num_joints)
mask_array = (joint_conf > 0).astype(np.uint8).max(axis=0)
assert len(mask_array) == num_joints
# generate mask
update_dict[f'{kpt_key}_mask'] = mask_array
self.update(update_dict)
def compress_keypoints_by_mask(self) -> None:
"""If a key contains 'keypoints', and f'{key}_mask' is in self.keys(),
invalid zeros will be removed and f'{key}_mask' will be locked.
Raises:
KeyError:
A key contains 'keypoints' has been found
but its corresponding mask is missing.
"""
assert self.__keypoints_compressed__ is False
key_pairs = []
for key in self.keys():
mask_key = f'{key}_mask'
val = self.get_raw_value(key)
if isinstance(val, np.ndarray) and \
'keypoints' in key and \
'_mask' not in key and 'has' not in key:
if mask_key in self:
key_pairs.append([key, mask_key])
else:
msg = f'Mask for {key} has not been set.' +\
f'Please set {mask_key} before compression.'
raise KeyError(msg)
compressed_dict = {}
for kpt_key, mask_key in key_pairs:
kpt_array = self.get_raw_value(kpt_key)
mask_array = np.asarray(self.get_raw_value(mask_key))
compressed_kpt = \
self.__class__.__remove_zero_pad__(kpt_array, mask_array)
compressed_dict[kpt_key] = compressed_kpt
# set value after all pairs are compressed
self.update(compressed_dict)
self.__keypoints_compressed__ = True
def decompress_keypoints(self) -> None:
"""If a key contains 'keypoints', and f'{key}_mask' is in self.keys(),
invalid zeros will be inserted to the right places and f'{key}_mask'
will be unlocked.
Raises:
KeyError:
A key contains 'keypoints' has been found
but its corresponding mask is missing.
"""
assert self.__keypoints_compressed__ is True
key_pairs = []
for key in self.keys():
mask_key = f'{key}_mask'
val = self.get_raw_value(key)
if isinstance(val, np.ndarray) and \
'keypoints' in key and \
'_mask' not in key:
if mask_key in self:
key_pairs.append([key, mask_key])
else:
class_logger = self.__class__.logger
msg = f'Mask for {key} has not been found.' +\
f'Please remove {key} before decompression.'
print_log(msg=msg,
logger=class_logger,
level=logging.ERROR)
raise KeyError
decompressed_dict = {}
for kpt_key, mask_key in key_pairs:
mask_array = np.asarray(self.get_raw_value(mask_key))
compressed_kpt = self.get_raw_value(kpt_key)
kpt_array = \
self.__class__.__add_zero_pad__(compressed_kpt, mask_array)
decompressed_dict[kpt_key] = kpt_array
# set value after all pairs are decompressed
self.update(decompressed_dict)
self.__keypoints_compressed__ = False
def dump_by_pickle(self, pkl_path: str, overwrite: bool = True) -> None:
"""Dump keys and items to a pickle file. It's a secondary dump method,
when a HumanData instance is too large to be dumped by self.dump()
Args:
pkl_path (str):
Path to a dumped pickle file.
overwrite (bool, optional):
Whether to overwrite if there is already a file.
Defaults to True.
Raises:
ValueError:
npz_path does not end with '.pkl'.
FileExistsError:
When overwrite is False and file exists.
"""
if not check_path_suffix(pkl_path, ['.pkl']):
raise ValueError('Not an pkl file.')
if not overwrite:
if check_path_existence(pkl_path, 'file') == Existence.FileExist:
raise FileExistsError
dict_to_dump = {
'__key_strict__': self.__key_strict__,
'__data_len__': self.__data_len__,
'__keypoints_compressed__': self.__keypoints_compressed__,
}
dict_to_dump.update(self)
with open(pkl_path, 'wb') as f_writeb:
pickle.dump(dict_to_dump,
f_writeb,
protocol=pickle.HIGHEST_PROTOCOL)
def load_by_pickle(self, pkl_path: str) -> None:
"""Load data from pkl_path and update them to self.
When a HumanData Instance was dumped by
self.dump_by_pickle(), use this to load.
Args:
npz_path (str):
Path to a dumped npz file.
"""
with open(pkl_path, 'rb') as f_readb:
tmp_data_dict = pickle.load(f_readb)
for key, value in list(tmp_data_dict.items()):
if value is None:
tmp_data_dict.pop(key)
elif key == '__key_strict__' or \
key == '__data_len__' or\
key == '__keypoints_compressed__':
self.__setattr__(key, value)
# pop the attributes to keep dict clean
tmp_data_dict.pop(key)
elif key == 'bbox_xywh' and value.shape[1] == 4:
value = np.hstack([value, np.ones([value.shape[0], 1])])
tmp_data_dict[key] = value
else:
tmp_data_dict[key] = value
self.update(tmp_data_dict)
self.__set_default_values__()
def __set_default_values__(self) -> None:
"""For older versions of HumanData, call this method to apply missing
values (also attributes)."""
supported_keys = self.__class__.SUPPORTED_KEYS
if self.__data_len__ == -1:
for key in supported_keys:
if key in self and \
'dim' in supported_keys[key] and\
supported_keys[key]['dim'] is not None:
if 'slice_key' in supported_keys[key] and\
supported_keys[key]['type'] == dict:
sub_key = supported_keys[key]['slice_key']
slice_dim = supported_keys[key]['dim']
self.__data_len__ = \
self[key][sub_key].shape[slice_dim]
else:
slice_dim = supported_keys[key]['dim']
self.__data_len__ = self[key].shape[slice_dim]
break
for key in list(self.keys()):
convention_key = f'{key}_convention'
if key.startswith('keypoints') and \
not key.endswith('_mask') and \
not key.endswith('_convention') and \
convention_key not in self:
self[convention_key] = 'human_data'
@classmethod
def concatenate(cls, human_data_0: _HumanData,
human_data_1: _HumanData) -> _HumanData:
"""Concatenate two human_data. All keys will be kept it the returned
human_data. If either value from human_data_0 or human_data_1 matches
data_len from its HumanData, the two values will be concatenated as a
single value. If not, postfix will be added to the key to specify
source of the value.
Args:
human_data_0 (_HumanData)
human_data_1 (_HumanData)
Returns:
_HumanData:
A new human_data instance with all concatenated data.
"""
ret_human_data = cls.new(key_strict=False)
set_0 = set(human_data_0.keys())
set_1 = set(human_data_1.keys())
common_keys = set_0.intersection(set_1)
dim_dict_0 = human_data_0.__get_slice_dim__()
dim_dict_1 = human_data_1.__get_slice_dim__()
for key in common_keys:
value_0 = human_data_0[key]
value_1 = human_data_1[key]
# align type
value_0 = list(value_0) if isinstance(value_0, tuple)\
else value_0
value_1 = list(value_1) if isinstance(value_1, tuple)\
else value_1
assert type(value_0) == type(value_1)
# align convention
if key.startswith('keypoints') and\
key.endswith('_convention'):
assert value_0 == value_1
ret_human_data[key] = value_0
continue
# mask_0 and mask_1
elif key.startswith('keypoints') and\
key.endswith('_mask'):
new_mask = value_0 * value_1
ret_human_data[key] = new_mask
continue
# go through the sub dict
if isinstance(value_0, dict):
sub_dict = {}
for sub_key, sub_value_0 in value_0.items():
# only found in value_0
if sub_key not in value_1:
sub_dict[sub_key] = sub_value_0
# found in both values
else:
sub_value_1 = value_1[sub_key]
concat_sub_dict = cls.__concat_value__(
key=sub_key,
value_0=sub_value_0,
dim_0=dim_dict_0[key][sub_key],
value_1=sub_value_1,
dim_1=dim_dict_1[key][sub_key])
sub_dict.update(concat_sub_dict)
for sub_key, sub_value_1 in value_1.items():
if sub_key not in value_0:
sub_dict[sub_key] = sub_value_1
ret_human_data[key] = sub_dict
# try concat
else:
concat_dict = cls.__concat_value__(key=key,
value_0=value_0,
dim_0=dim_dict_0[key],
value_1=value_1,
dim_1=dim_dict_1[key])
ret_human_data.update(concat_dict)
# check exclusive keys
for key, value in human_data_0.items():
if key not in common_keys:
# value not for concat and slice
if dim_dict_0[key] is None:
ret_human_data[key] = value
# value aligned with data_len of HumanData_0
else:
ret_human_data[f'{key}_0'] = value
for key, value in human_data_1.items():
if key not in common_keys:
# same as above
if dim_dict_1[key] is None:
ret_human_data[key] = value
else:
ret_human_data[f'{key}_1'] = value
return ret_human_data
@classmethod
def __concat_value__(cls, key: Any, value_0: Any, value_1: Any,
dim_0: Union[None, int], dim_1: Union[None,
int]) -> dict:
"""Concat two values from two different HumanData.
Args:
key (Any):
The common key of the two values.
value_0 (Any):
Value from 0.
value_1 (Any):
Value from 1.
dim_0 (Union[None, int]):
The dim for concat and slice. None for N/A.
dim_1 (Union[None, int]):
The dim for concat and slice. None for N/A.
Returns:
dict:
Dict for concatenated result.
"""
ret_dict = {}
if dim_0 is None or dim_1 is None:
ret_dict[f'{key}_0'] = value_0
ret_dict[f'{key}_1'] = value_1
elif isinstance(value_0, list):
ret_dict[key] = value_0 + value_1
# elif isinstance(value_0, np.ndarray):
else:
ret_dict[key] = np.concatenate((value_0, value_1), axis=dim_0)
return ret_dict
@classmethod
def __add_zero_pad__(cls, compressed_array: np.ndarray,
mask_array: np.ndarray) -> np.ndarray:
"""Pad zeros to a compressed keypoints array.
Args:
compressed_array (np.ndarray):
A compressed keypoints array.
mask_array (np.ndarray):
The mask records compression relationship.
Returns:
np.ndarray:
A keypoints array in full-size.
"""
assert mask_array.sum() == compressed_array.shape[1]
data_len, _, dim = compressed_array.shape
mask_len = mask_array.shape[0]
ret_value = np.zeros(shape=[data_len, mask_len, dim],
dtype=compressed_array.dtype)
valid_mask_index = np.where(mask_array == 1)[0]
ret_value[:, valid_mask_index, :] = compressed_array
return ret_value
@classmethod
def __remove_zero_pad__(cls, zero_pad_array: np.ndarray,
mask_array: np.ndarray) -> np.ndarray:
"""Remove zero-padding from a full-size keypoints array.
Args:
zero_pad_array (np.ndarray):
A keypoints array in full-size.
mask_array (np.ndarray):
The mask records compression relationship.
Returns:
np.ndarray:
A compressed keypoints array.
"""
assert mask_array.shape[0] == zero_pad_array.shape[1]
valid_mask_index = np.where(mask_array == 1)[0]
ret_value = np.take(zero_pad_array, valid_mask_index, axis=1)
return ret_value
@classmethod
def __get_key_warn_msg__(cls, key: Any) -> str:
"""Get the warning message when a key fails the check.
Args:
key (Any):
The key with wrong.
Returns:
str:
The warning message.
"""
class_name = cls.__name__
warn_message = \
f'{key} is absent in' +\
f' {class_name}.SUPPORTED_KEYS.\n'
suggestion_message = \
'Ignore this if you know exactly' +\
' what you are doing.\n' +\
'Otherwise, Call self.set_key_strict(True)' +\
' to avoid wrong keys.\n'
return warn_message + suggestion_message
@classmethod
def __get_key_error_msg__(cls, key: Any) -> str:
"""Get the error message when a key fails the check.
Args:
key (Any):
The key with wrong.
Returns:
str:
The error message.
"""
class_name = cls.__name__
absent_message = \
f'{key} is absent in' +\
f' {class_name}.SUPPORTED_KEYS.\n'
suggestion_message = \
'Call self.set_key_strict(False)' +\
' to allow unsupported keys.\n'
return absent_message + suggestion_message
@classmethod
def __get_value_error_msg__(cls) -> str:
"""Get the error message when a value fails the check.
Returns:
str:
The error message.
"""
error_message = \
'An supported value doesn\'t ' +\
'match definition.\n'
suggestion_message = \
'See error log for details.\n'
return error_message + suggestion_message
@classmethod
def __get_sliced_result__(
cls, input_data: Union[np.ndarray, list, tuple], slice_dim: int,
slice_range: slice) -> Union[np.ndarray, list, tuple]:
"""Slice input_data along slice_dim with slice_range.
Args:
input_data (Union[np.ndarray, list, tuple]):
Data to be sliced.
slice_dim (int):
Dimension to be sliced.
slice_range (slice):
An instance of class slice.
Returns:
Union[np.ndarray, list, tuple]:
A slice of input_data.
"""
if isinstance(input_data, np.ndarray):
slice_list = [
slice(None),
] * len(input_data.shape)
slice_list[slice_dim] = slice_range
sliced_data = input_data[tuple(slice_list)]
else:
sliced_data = \
input_data[slice_range]
return sliced_data