Spaces:
Sleeping
Sleeping
import os | |
import os.path as osp | |
import numpy as np | |
import torch | |
import cv2 | |
import json | |
import copy | |
from pycocotools.coco import COCO | |
from config.config import cfg | |
from util.human_models import smpl_x | |
from util.preprocessing import ( | |
load_img, process_bbox, augmentation_instance_sample, process_human_model_output_batch_simplify,process_db_coord_batch_no_valid) | |
from util.transforms import world2cam, cam2pixel, rigid_align | |
from detrsmpl.utils.geometry import batch_rodrigues, project_points_new, weak_perspective_projection, perspective_projection | |
import tqdm | |
import time | |
import random | |
from detrsmpl.utils.demo_utils import box2cs, xywh2xyxy, xyxy2xywh | |
import torch.distributed as dist | |
KPS2D_KEYS = [ | |
'keypoints2d_ori', 'keypoints2d_smplx', 'keypoints2d_smpl', | |
'keypoints2d_original','keypoints2d_gta','keypoints2d' | |
] | |
KPS3D_KEYS = [ | |
'keypoints3d_cam', 'keypoints3d', 'keypoints3d_smplx', 'keypoints3d_smpl', | |
'keypoints3d_original', 'keypoints3d_gta','keypoints3d' | |
] | |
# keypoints3d_cam with root-align has higher priority, followed by old version key keypoints3d | |
# when there is keypoints3d_smplx, use this rather than keypoints3d_original | |
from util.formatting import DefaultFormatBundle | |
from detrsmpl.data.datasets.pipelines.transforms import Normalize | |
class Cache(): | |
"""A custom implementation for OSX pipeline.""" | |
def __init__(self, load_path=None): | |
if load_path is not None: | |
self.load(load_path) | |
def load(self, load_path): | |
self.load_path = load_path | |
self.cache = np.load(load_path, allow_pickle=True) | |
self.data_len = self.cache['data_len'] | |
self.data_strategy = self.cache['data_strategy'] | |
assert self.data_len == len(self.cache) - 2 # data_len, data_strategy | |
self.cache = None | |
def save(cls, save_path, data_list, data_strategy): | |
assert save_path is not None, 'save_path is None' | |
data_len = len(data_list) | |
cache = {} | |
for i, data in enumerate(data_list): | |
cache[str(i)] = data | |
assert len(cache) == data_len | |
# update meta | |
cache.update({'data_len': data_len, 'data_strategy': data_strategy}) | |
# import pdb; pdb.set_trace() | |
np.savez_compressed(save_path, **cache) | |
print(f'Cache saved to {save_path}.') | |
# def shuffle(self): | |
# random.shuffle(self.mapping) | |
def __len__(self): | |
return self.data_len | |
def __getitem__(self, idx): | |
if self.cache is None: | |
self.cache = np.load(self.load_path, allow_pickle=True) | |
# mapped_idx = self.mapping[idx] | |
# cache_data = self.cache[str(mapped_idx)] | |
# print(self.cache.files) | |
cache_data = self.cache[str(idx)] | |
data = cache_data.item() | |
return data | |
class HumanDataset(torch.utils.data.Dataset): | |
# same mapping for 144->137 and 190->137 | |
SMPLX_137_MAPPING = [ | |
0, 1, 2, 4, 5, 7, 8, 12, 16, 17, 18, 19, 20, 21, 60, 61, 62, 63, 64, | |
65, 59, 58, 57, 56, 55, 37, 38, 39, 66, 25, 26, 27, 67, 28, 29, 30, 68, | |
34, 35, 36, 69, 31, 32, 33, 70, 52, 53, 54, 71, 40, 41, 42, 72, 43, 44, | |
45, 73, 49, 50, 51, 74, 46, 47, 48, 75, 22, 15, 56, 57, 76, 77, 78, 79, | |
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, | |
98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, | |
112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, | |
126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, | |
140, 141, 142, 143 | |
] | |
def __init__(self, transform, data_split): | |
self.transform = transform | |
self.data_split = data_split | |
# dataset information, to be filled by child class | |
self.img_dir = None | |
self.annot_path = None | |
self.annot_path_cache = None | |
self.use_cache = False | |
self.img_shape = None # (h, w) | |
self.cam_param = None # {'focal_length': (fx, fy), 'princpt': (cx, cy)} | |
self.use_betas_neutral = False | |
self.body_only = False | |
self.joint_set = { | |
'joint_num': smpl_x.joint_num, | |
'joints_name': smpl_x.joints_name, | |
'flip_pairs': smpl_x.flip_pairs | |
} | |
self.joint_set['root_joint_idx'] = self.joint_set['joints_name'].index( | |
'Pelvis') | |
self.format = DefaultFormatBundle() | |
self.normalize = Normalize(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]) | |
self.keypoints2d = None | |
# self.rank = dist.get_rank() | |
self.lhand_mean = smpl_x.layer['neutral'].left_hand_mean.reshape(15, 3).cpu().numpy() | |
self.rhand_mean = smpl_x.layer['neutral'].right_hand_mean.reshape(15, 3).cpu().numpy() | |
# self.log_file_path = f'indices_node{rank}.txt' | |
def load_cache(self, annot_path_cache): | |
datalist = Cache(annot_path_cache) | |
# assert datalist.data_strategy == getattr(cfg, 'data_strategy', None), \ | |
# f'Cache data strategy {datalist.data_strategy} does not match current data strategy ' \ | |
# f'{getattr(cfg, "data_strategy", None)}' | |
return datalist | |
def save_cache(self, annot_path_cache, datalist): | |
print( | |
f'[{self.__class__.__name__}] Caching datalist to {self.annot_path_cache}...' | |
) | |
Cache.save(annot_path_cache, | |
datalist, | |
data_strategy=getattr(cfg, 'data_strategy', None)) | |
def load_data(self, train_sample_interval=1, | |
hand_bbox_ratio=1, body_bbox_ratio=1): | |
content = np.load(self.annot_path, allow_pickle=True) | |
try: | |
frame_range = content['frame_range'] | |
except KeyError: | |
self.num_data = len(content['image_path']) | |
frame_range = \ | |
np.array([[i, i + 1] for i in range(self.num_data)]) | |
num_examples = len(frame_range) | |
if 'meta' in content: | |
meta = content['meta'].item() | |
print('meta keys:', meta.keys()) | |
else: | |
meta = None | |
print( | |
'No meta info provided! Please give height and width manually') | |
print( | |
f'Start loading humandata {self.annot_path} into memory...\nDataset includes: {content.files}' | |
) | |
tic = time.time() | |
image_path = content['image_path'] | |
if meta is not None and 'height' in meta and len(meta['height'])>0: | |
height = np.array(meta['height']) | |
width = np.array(meta['width']) | |
image_shape = np.stack([height, width], axis=-1) | |
else: | |
image_shape = None | |
if meta is not None and 'gender' in meta and len(meta['gender']) != 0: | |
gender = np.array(meta['gender']) | |
else: | |
gender = None | |
bbox_xywh = content['bbox_xywh'] | |
if 'smplx' in content: | |
smplx = content['smplx'].item() | |
as_smplx = 'smplx' | |
elif 'smpl' in content: | |
smplx = content['smpl'].item() | |
as_smplx = 'smpl' | |
elif 'smplh' in content: | |
smplx = content['smplh'].item() | |
as_smplx = 'smplh' | |
# TODO: temp solution, should be more general. But SHAPY is very special | |
elif self.__class__.__name__ == 'SHAPY': | |
smplx = {} | |
else: | |
raise KeyError('No SMPL for SMPLX available, please check keys:\n' | |
f'{content.files}') | |
print('Smplx param', smplx.keys()) | |
if 'lhand_bbox_xywh' in content and 'rhand_bbox_xywh' in content: | |
lhand_bbox_xywh = content['lhand_bbox_xywh'] | |
rhand_bbox_xywh = content['rhand_bbox_xywh'] | |
else: | |
lhand_bbox_xywh = np.zeros_like(bbox_xywh) | |
rhand_bbox_xywh = np.zeros_like(bbox_xywh) | |
if 'face_bbox_xywh' in content: | |
face_bbox_xywh = content['face_bbox_xywh'] | |
else: | |
face_bbox_xywh = np.zeros_like(bbox_xywh) | |
if meta is not None and 'smplx_valid' in meta: | |
smplx_valid = meta['smplx_valid'] | |
else: | |
smplx_valid = np.ones(len(bbox_xywh)) | |
decompressed = False | |
if content['__keypoints_compressed__']: | |
decompressed_kps = self.decompress_keypoints(content) | |
decompressed = True | |
keypoints3d = None | |
valid_kps3d = False | |
keypoints3d_mask = None | |
valid_kps3d_mask = False | |
# processing keypoints | |
for kps3d_key in KPS3D_KEYS: | |
if kps3d_key in content: | |
keypoints3d = decompressed_kps[kps3d_key][:, self.SMPLX_137_MAPPING, :] if decompressed \ | |
else content[kps3d_key][:, self.SMPLX_137_MAPPING, :] | |
valid_kps3d = True | |
if keypoints3d.shape[-1] == 4: | |
valid_kps3d_mask = True | |
break | |
if self.keypoints2d is not None: | |
keypoints2d = decompressed_kps[self.keypoints2d][:, self.SMPLX_137_MAPPING, :] if decompressed \ | |
else content[self.keypoints2d][:, self.SMPLX_137_MAPPING, :] | |
else: | |
for kps2d_key in KPS2D_KEYS: | |
if kps2d_key in content: | |
keypoints2d = decompressed_kps[kps2d_key][:, self.SMPLX_137_MAPPING, :] if decompressed \ | |
else content[kps2d_key][:, self.SMPLX_137_MAPPING, :] | |
break | |
if keypoints2d.shape[-1] == 3: | |
valid_kps3d_mask = True | |
print('Done. Time: {:.2f}s'.format(time.time() - tic)) | |
datalist = [] | |
# num_examples | |
# processing each image, filter according to bbox valid | |
for i in tqdm.tqdm(range(int(num_examples))): | |
if self.data_split == 'train' and i % train_sample_interval != 0: | |
continue | |
frame_start, frame_end = frame_range[i] | |
img_path = osp.join(self.img_dir, image_path[frame_start]) | |
# im_shape = cv2.imread(img_path).shape[:2] | |
img_shape = image_shape[ | |
frame_start] if image_shape is not None else self.img_shape | |
bbox_list = bbox_xywh[frame_start:frame_end, :4] | |
valid_idx = [] | |
body_bbox_list = [] | |
# if hasattr(cfg, 'bbox_ratio'): | |
# bbox_ratio = cfg.bbox_ratio * 0.833 # preprocess body bbox is giving 1.2 box padding | |
# else: | |
# bbox_ratio = 1.25 | |
# if self.__class__.__name__ == 'SPEC': | |
# bbox_ratio = 1.25 | |
for bbox_i, bbox in enumerate(bbox_list): | |
bbox = process_bbox(bbox, | |
img_width=img_shape[1], | |
img_height=img_shape[0], | |
ratio=body_bbox_ratio) | |
if bbox is None: | |
continue | |
else: | |
valid_idx.append(frame_start + bbox_i) | |
bbox[2:] += bbox[:2] | |
body_bbox_list.append(bbox) | |
if len(valid_idx) == 0: | |
continue | |
valid_num = len(valid_idx) | |
# hand/face bbox | |
lhand_bbox_list = [] | |
rhand_bbox_list = [] | |
face_bbox_list = [] | |
smplx_valid_list = [] | |
for bbox_i in valid_idx: | |
smplx_valid_list.append(smplx_valid[bbox_i]) | |
lhand_bbox = lhand_bbox_xywh[bbox_i] | |
rhand_bbox = rhand_bbox_xywh[bbox_i] | |
face_bbox = face_bbox_xywh[bbox_i] | |
if lhand_bbox[-1] > 0: # conf > 0 | |
lhand_bbox = lhand_bbox[:4] | |
# if hasattr(cfg, 'bbox_ratio'): | |
lhand_bbox = process_bbox(lhand_bbox, | |
img_width=img_shape[1], | |
img_height=img_shape[0], | |
ratio=hand_bbox_ratio) | |
if lhand_bbox is not None: | |
lhand_bbox[2:] += lhand_bbox[:2] # xywh -> xyxy | |
else: | |
lhand_bbox = None | |
if rhand_bbox[-1] > 0: | |
rhand_bbox = rhand_bbox[:4] | |
# if hasattr(cfg, 'bbox_ratio'): | |
rhand_bbox = process_bbox(rhand_bbox, | |
img_width=img_shape[1], | |
img_height=img_shape[0], | |
ratio=hand_bbox_ratio) | |
if rhand_bbox is not None: | |
rhand_bbox[2:] += rhand_bbox[:2] # xywh -> xyxy | |
else: | |
rhand_bbox = None | |
if face_bbox[-1] > 0: | |
face_bbox = face_bbox[:4] | |
# if hasattr(cfg, 'bbox_ratio'): | |
face_bbox = process_bbox(face_bbox, | |
img_width=img_shape[1], | |
img_height=img_shape[0], | |
ratio=hand_bbox_ratio) | |
if face_bbox is not None: | |
face_bbox[2:] += face_bbox[:2] # xywh -> xyxy | |
else: | |
face_bbox = None | |
lhand_bbox_list.append(lhand_bbox) | |
rhand_bbox_list.append(rhand_bbox) | |
face_bbox_list.append(face_bbox) | |
joint_img = keypoints2d[valid_idx] | |
if valid_kps3d: | |
joint_cam = keypoints3d[valid_idx] | |
else: | |
joint_cam = None | |
if 'leye_pose_0' in smplx.keys(): | |
smplx.pop('leye_pose_0') | |
if 'leye_pose_1' in smplx.keys(): | |
smplx.pop('leye_pose_1') | |
if 'leye_pose' in smplx.keys(): | |
smplx.pop('leye_pose') | |
if 'reye_pose_0' in smplx.keys(): | |
smplx.pop('reye_pose_0') | |
if 'reye_pose_1' in smplx.keys(): | |
smplx.pop('reye_pose_1') | |
if 'reye_pose' in smplx.keys(): | |
smplx.pop('reye_pose') | |
smplx_param = {k: v[valid_idx] for k, v in smplx.items()} | |
gender_ = gender[valid_idx] \ | |
if gender is not None else np.array(['neutral']*(valid_num)) | |
lhand_bbox_valid = lhand_bbox_xywh[valid_idx,4] | |
rhand_bbox_valid = rhand_bbox_xywh[valid_idx,4] | |
face_bbox_valid = face_bbox_xywh[valid_idx,4] | |
# TODO: set invalid if None? | |
smplx_param['root_pose'] = smplx_param.pop('global_orient', None) | |
smplx_param['shape'] = smplx_param.pop('betas', None) | |
smplx_param['trans'] = smplx_param.pop('transl', np.zeros([len(valid_idx),3])) | |
smplx_param['lhand_pose'] = smplx_param.pop('left_hand_pose', None) | |
smplx_param['rhand_pose'] = smplx_param.pop( | |
'right_hand_pose', None) | |
smplx_param['expr'] = smplx_param.pop('expression', None) | |
# TODO do not fix betas, give up shape supervision | |
if 'betas_neutral' in smplx_param and self.data_split == 'train': | |
smplx_param['shape'] = smplx_param.pop('betas_neutral') | |
# smplx_param['shape'] = np.zeros(10, dtype=np.float32) | |
# # TODO fix shape of poses | |
if self.__class__.__name__ == 'Talkshow': | |
smplx_param['body_pose'] = smplx_param['body_pose'].reshape( | |
-1, 21, 3) | |
smplx_param['lhand_pose'] = smplx_param['lhand_pose'].reshape( | |
-1, 15, 3) | |
smplx_param['rhand_pose'] = smplx_param['lhand_pose'].reshape( | |
-1, 15, 3) | |
smplx_param['expr'] = smplx_param['expr'][:, :10] | |
if self.__class__.__name__ == 'BEDLAM': | |
smplx_param['shape'] = smplx_param['shape'][:, :10] | |
# smplx_param['expr'] = None | |
if self.__class__.__name__ == 'GTA': | |
smplx_param['shape'] = np.zeros( | |
[valid_num, 10], | |
dtype=np.float32) | |
if self.__class__.__name__ == 'COCO_NA': | |
# smplx_param['expr'] = None | |
smplx_param['body_pose'] = smplx_param['body_pose'].reshape( | |
-1, 21, 3) | |
smplx_param['lhand_pose'] = smplx_param['lhand_pose'].reshape( | |
-1, 15, 3) | |
smplx_param['rhand_pose'] = smplx_param['rhand_pose'].reshape( | |
-1, 15, 3) | |
if as_smplx == 'smpl': | |
smplx_param['shape'] = np.zeros( | |
[valid_num, 10], | |
dtype=np.float32) # drop smpl betas for smplx | |
smplx_param['body_pose'] = smplx_param[ | |
'body_pose'].reshape(-1,23,3)[:, :21, :] # use smpl body_pose on smplx | |
if as_smplx == 'smplh': | |
smplx_param['shape'] = np.zeros( | |
[valid_num, 10], | |
dtype=np.float32) # drop smpl betas for smplx | |
if smplx_param['lhand_pose'] is None or self.body_only == True: | |
smplx_param['lhand_valid'] = np.zeros(valid_num, dtype=np.bool8) | |
else: | |
smplx_param['lhand_valid'] = lhand_bbox_valid.astype(np.bool8) | |
if smplx_param['rhand_pose'] is None or self.body_only == True: | |
smplx_param['rhand_valid'] = np.zeros(valid_num, dtype=np.bool8) | |
else: | |
smplx_param['rhand_valid'] = rhand_bbox_valid.astype(np.bool8) | |
if smplx_param['expr'] is None or self.body_only == True: | |
smplx_param['face_valid'] = np.zeros(valid_num, dtype=np.bool8) | |
else: | |
smplx_param['face_valid'] = face_bbox_valid.astype(np.bool8) | |
smplx_param['smplx_valid'] = np.array(smplx_valid_list).astype(np.bool8) | |
if joint_cam is not None and np.any(np.isnan(joint_cam)): | |
continue | |
if self.__class__.__name__ == 'SPEC': | |
joint_img[:,:,2] = joint_img[:,:,2]>0 | |
joint_cam[:,:,3] = joint_cam[:,:,0]!=0 | |
datalist.append({ | |
'img_path': img_path, | |
'img_shape': img_shape, | |
'bbox': body_bbox_list, | |
'lhand_bbox': lhand_bbox_list, | |
'rhand_bbox': rhand_bbox_list, | |
'face_bbox': face_bbox_list, | |
'joint_img': joint_img, | |
'joint_cam': joint_cam, | |
'smplx_param': smplx_param, | |
'as_smplx': as_smplx, | |
'gender': gender_ | |
}) | |
# save memory | |
del content, image_path, bbox_xywh, lhand_bbox_xywh, rhand_bbox_xywh, face_bbox_xywh, keypoints3d, keypoints2d | |
if self.data_split == 'train': | |
print(f'[{self.__class__.__name__} train] original size:', | |
int(num_examples), '. Sample interval:', | |
train_sample_interval, '. Sampled size:', len(datalist)) | |
if getattr(cfg, 'data_strategy', | |
None) == 'balance' and self.data_split == 'train': | |
print( | |
f'[{self.__class__.__name__}] Using [balance] strategy with datalist shuffled...' | |
) | |
random.shuffle(datalist) | |
return datalist | |
def __len__(self): | |
return len(self.datalist) | |
# 19493 | |
def __getitem__(self, idx): | |
# rank = self.rank | |
# local_rank = rank % torch.cuda.device_count() | |
# with open(f'index_log_{rank}.txt', 'a') as f: | |
# f.write(f'{rank}-{local_rank}-{idx}\n') | |
try: | |
data = copy.deepcopy(self.datalist[idx]) | |
except Exception as e: | |
print(f'[{self.__class__.__name__}] Error loading data {idx}') | |
print(e) | |
exit(0) | |
# data/datasets/coco_2017/train2017/000000029582.jpg' 45680 | |
img_path, img_shape, bbox = \ | |
data['img_path'], data['img_shape'], data['bbox'] | |
as_smplx = data['as_smplx'] | |
gender = data['gender'].copy() | |
for gender_str, gender_num in { | |
'neutral': -1, 'male': 0, 'female': 1}.items(): | |
gender[gender==gender_str]=gender_num | |
gender = gender.astype(int) | |
img_whole_bbox = np.array([0, 0, img_shape[1], img_shape[0]]) | |
img = load_img(img_path, order='BGR') | |
num_person = len(data['bbox']) | |
data_name = self.__class__.__name__ | |
try: | |
# dist.barrier() | |
img, img2bb_trans, bb2img_trans, rot, do_flip = \ | |
augmentation_instance_sample(img, img_whole_bbox, self.data_split, data, data_name) | |
except Exception as e: | |
rank = self.rank | |
local_rank = rank % torch.cuda.device_count() | |
with open(f'index_log_{rank}.txt', 'a') as f: | |
f.write(f'{rank}-{local_rank}-{idx}\n') | |
f.write(f'[{self.__class__.__name__}] Error loading data {idx}\n') | |
f.write(f'Error in augmentation_instance_sample for {img_path}\n') | |
# print(f'[{self.__class__.__name__}] Error loading data {idx}') | |
# print(f'Error in augmentation_instance_sample for {img_path}') | |
raise e | |
cropped_img_shape = img.shape[:2] | |
if self.data_split == 'train': | |
joint_cam = data['joint_cam'] # num, 137,4 | |
if joint_cam is not None: | |
dummy_cord = False | |
joint_cam[:,:,:3] = \ | |
joint_cam[:,:,:3] - joint_cam[:, self.joint_set['root_joint_idx'], None, :3] # root-relative | |
else: | |
# dummy cord as joint_cam | |
dummy_cord = True | |
joint_cam = np.zeros( | |
(num_person, self.joint_set['joint_num'], 4), | |
dtype=np.float32) | |
joint_img = data['joint_img'] | |
# do rotation on keypoints | |
joint_img_aug, joint_cam_wo_ra, joint_cam_ra, joint_trunc = \ | |
process_db_coord_batch_no_valid( | |
joint_img, joint_cam, do_flip, img_shape, | |
self.joint_set['flip_pairs'], img2bb_trans, rot, | |
self.joint_set['joints_name'], smpl_x.joints_name, | |
cropped_img_shape) | |
joint_img_aug[:,:,2:] = joint_img_aug[:,:,2:] * joint_trunc | |
# smplx coordinates and parameters | |
smplx_param = data['smplx_param'] | |
if self.__class__.__name__ in [ 'CHI3D', 'SynBody', 'UBody_MM']: | |
smplx_param['lhand_pose']-=self.lhand_mean[None] | |
smplx_param['rhand_pose']-=self.rhand_mean[None] | |
# smplx_param | |
smplx_pose, smplx_shape, smplx_expr, smplx_pose_valid, \ | |
smplx_joint_valid, smplx_expr_valid, smplx_shape_valid = \ | |
process_human_model_output_batch_simplify( | |
smplx_param, do_flip, rot, as_smplx, data_name) | |
smplx_joint_valid = smplx_joint_valid[:, :, None] | |
# if cam not provided, we take joint_img as smplx joint 2d, | |
# which is commonly the case for our processed humandata | |
# change smplx_shape if use_betas_neutral | |
# processing follows that in process_human_model_output | |
if self.use_betas_neutral: | |
smplx_shape = smplx_param['betas_neutral'].reshape( | |
num_person, -1) | |
smplx_shape[(np.abs(smplx_shape) > 3).any(axis=1)] = 0. | |
smplx_shape = smplx_shape.reshape(num_person, -1) | |
if self.__class__.__name__ == 'MPII_MM' : | |
for name in ('L_Ankle', 'R_Ankle', 'L_Wrist', 'R_Wrist'): | |
smplx_pose_valid[:, smpl_x.orig_joints_name.index(name)] = 0 | |
for name in ('L_Big_toe', 'L_Small_toe', 'L_Heel', 'R_Big_toe', 'R_Small_toe', 'R_Heel'): | |
smplx_joint_valid[:,smpl_x.joints_name.index(name)] = 0 | |
lhand_bbox_center_list = [] | |
lhand_bbox_valid_list = [] | |
lhand_bbox_size_list = [] | |
lhand_bbox_list = [] | |
face_bbox_center_list = [] | |
face_bbox_size_list = [] | |
face_bbox_valid_list = [] | |
face_bbox_list = [] | |
rhand_bbox_center_list = [] | |
rhand_bbox_valid_list = [] | |
rhand_bbox_size_list = [] | |
rhand_bbox_list = [] | |
body_bbox_center_list = [] | |
body_bbox_size_list = [] | |
body_bbox_valid_list = [] | |
body_bbox_list = [] | |
# hand and face bbox transform | |
for i in range(num_person): | |
body_bbox, body_bbox_valid = self.process_hand_face_bbox( | |
data['bbox'][i], do_flip, img_shape, img2bb_trans, | |
cropped_img_shape) | |
lhand_bbox, lhand_bbox_valid = self.process_hand_face_bbox( | |
data['lhand_bbox'][i], do_flip, img_shape, img2bb_trans, | |
cropped_img_shape) | |
lhand_bbox_valid *= smplx_param['lhand_valid'][i] | |
rhand_bbox, rhand_bbox_valid = self.process_hand_face_bbox( | |
data['rhand_bbox'][i], do_flip, img_shape, img2bb_trans, | |
cropped_img_shape) | |
rhand_bbox_valid *= smplx_param['rhand_valid'][i] | |
face_bbox, face_bbox_valid = self.process_hand_face_bbox( | |
data['face_bbox'][i], do_flip, img_shape, img2bb_trans, | |
cropped_img_shape) | |
face_bbox_valid *= smplx_param['face_valid'][i] | |
# BEDLAM and COCO_NA do not have face expression | |
# if self.__class__.__name__ != 'BEDLAM': | |
# face_bbox_valid *= smplx_param['face_valid'][i] | |
if do_flip: | |
lhand_bbox, rhand_bbox = rhand_bbox, lhand_bbox | |
lhand_bbox_valid, rhand_bbox_valid = rhand_bbox_valid, lhand_bbox_valid | |
body_bbox_list.append(body_bbox) | |
lhand_bbox_list.append(lhand_bbox) | |
rhand_bbox_list.append(rhand_bbox) | |
face_bbox_list.append(face_bbox) | |
lhand_bbox_center = (lhand_bbox[0] + lhand_bbox[1]) / 2. | |
rhand_bbox_center = (rhand_bbox[0] + rhand_bbox[1]) / 2. | |
face_bbox_center = (face_bbox[0] + face_bbox[1]) / 2. | |
body_bbox_center = (body_bbox[0] + body_bbox[1]) / 2. | |
lhand_bbox_size = lhand_bbox[1] - lhand_bbox[0] | |
rhand_bbox_size = rhand_bbox[1] - rhand_bbox[0] | |
face_bbox_size = face_bbox[1] - face_bbox[0] | |
body_bbox_size = body_bbox[1] - body_bbox[0] | |
lhand_bbox_center_list.append(lhand_bbox_center) | |
lhand_bbox_valid_list.append(lhand_bbox_valid) | |
lhand_bbox_size_list.append(lhand_bbox_size) | |
face_bbox_center_list.append(face_bbox_center) | |
face_bbox_size_list.append(face_bbox_size) | |
face_bbox_valid_list.append(face_bbox_valid) | |
rhand_bbox_center_list.append(rhand_bbox_center) | |
rhand_bbox_valid_list.append(rhand_bbox_valid) | |
rhand_bbox_size_list.append(rhand_bbox_size) | |
body_bbox_center_list.append(body_bbox_center) | |
body_bbox_size_list.append(body_bbox_size) | |
body_bbox_valid_list.append(body_bbox_valid) | |
body_bbox = np.stack(body_bbox_list, axis=0) | |
lhand_bbox = np.stack(lhand_bbox_list, axis=0) | |
rhand_bbox = np.stack(rhand_bbox_list, axis=0) | |
face_bbox = np.stack(face_bbox_list, axis=0) | |
lhand_bbox_center = np.stack(lhand_bbox_center_list, axis=0) | |
lhand_bbox_valid = np.stack(lhand_bbox_valid_list, axis=0) | |
lhand_bbox_size = np.stack(lhand_bbox_size_list, axis=0) | |
face_bbox_center = np.stack(face_bbox_center_list, axis=0) | |
face_bbox_size = np.stack(face_bbox_size_list, axis=0) | |
face_bbox_valid = np.stack(face_bbox_valid_list, axis=0) | |
body_bbox_center = np.stack(body_bbox_center_list, axis=0) | |
body_bbox_size = np.stack(body_bbox_size_list, axis=0) | |
body_bbox_valid = np.stack(body_bbox_valid_list, axis=0) | |
rhand_bbox_center = np.stack(rhand_bbox_center_list, axis=0) | |
rhand_bbox_valid = np.stack(rhand_bbox_valid_list, axis=0) | |
rhand_bbox_size = np.stack(rhand_bbox_size_list, axis=0) | |
inputs = {'img': img} | |
# joint_img_aug[:,:,2] = joint_img_aug[:,:,2] * body_bbox_valid[:,None] | |
is_3D = float(False) if dummy_cord else float(True) | |
if self.__class__.__name__ == 'COCO_NA': | |
is_3D = False | |
if self.__class__.__name__ == 'GTA_Human2': | |
smplx_shape_valid = smplx_shape_valid * 0 | |
if self.__class__.__name__ == 'PoseTrack' or self.__class__.__name__ == 'MPII_MM' \ | |
or self.__class__.__name__ == 'CrowdPose' or self.__class__.__name__ == 'UBody_MM' \ | |
or self.__class__.__name__ == 'COCO_NA': | |
joint_cam_ra[...,-1] = joint_cam_ra[...,-1] * smplx_joint_valid[...,0] | |
joint_cam_wo_ra[...,-1] = joint_cam_wo_ra[...,-1] * smplx_joint_valid[...,0] | |
joint_img_aug[...,-1] = joint_img_aug[...,-1] * smplx_joint_valid[...,0] | |
# if body_bbox_valid.sum() > 0: | |
targets = { | |
# keypoints2d, [0,img_w],[0,img_h] -> [0,1] -> [0,output_hm_shape] | |
'joint_img': joint_img_aug[body_bbox_valid>0], | |
# joint_cam, kp3d wo ra # raw kps3d probably without ra | |
'joint_cam': joint_cam_wo_ra[body_bbox_valid>0], | |
# kps3d with body, face, hand ra | |
'smplx_joint_cam': joint_cam_ra[body_bbox_valid>0], | |
'smplx_pose': smplx_pose[body_bbox_valid>0], | |
'smplx_shape': smplx_shape[body_bbox_valid>0], | |
'smplx_expr': smplx_expr[body_bbox_valid>0], | |
'lhand_bbox_center': lhand_bbox_center[body_bbox_valid>0], | |
'lhand_bbox_size': lhand_bbox_size[body_bbox_valid>0], | |
'rhand_bbox_center': rhand_bbox_center[body_bbox_valid>0], | |
'rhand_bbox_size': rhand_bbox_size[body_bbox_valid>0], | |
'face_bbox_center': face_bbox_center[body_bbox_valid>0], | |
'face_bbox_size': face_bbox_size[body_bbox_valid>0], | |
'body_bbox_center': body_bbox_center[body_bbox_valid>0], | |
'body_bbox_size': body_bbox_size[body_bbox_valid>0], | |
'body_bbox': body_bbox.reshape(-1,4)[body_bbox_valid>0], | |
'lhand_bbox': lhand_bbox.reshape(-1,4)[body_bbox_valid>0], | |
'rhand_bbox': rhand_bbox.reshape(-1,4)[body_bbox_valid>0], | |
'face_bbox': face_bbox.reshape(-1,4)[body_bbox_valid>0], | |
'gender': gender[body_bbox_valid>0]} | |
meta_info = { | |
'joint_trunc': joint_trunc[body_bbox_valid>0], | |
'smplx_pose_valid': smplx_pose_valid[body_bbox_valid>0], | |
'smplx_shape_valid': smplx_shape_valid[body_bbox_valid>0], | |
'smplx_expr_valid': smplx_expr_valid[body_bbox_valid>0], | |
'is_3D': is_3D, | |
'lhand_bbox_valid': lhand_bbox_valid[body_bbox_valid>0], | |
'rhand_bbox_valid': rhand_bbox_valid[body_bbox_valid>0], | |
'face_bbox_valid': face_bbox_valid[body_bbox_valid>0], | |
'body_bbox_valid': body_bbox_valid[body_bbox_valid>0], | |
'img_shape': np.array(img.shape[:2]), | |
'ori_shape':data['img_shape'], | |
'idx': idx | |
} | |
result = {**inputs, **targets, **meta_info} | |
result = self.normalize(result) | |
result = self.format(result) | |
return result | |
if self.data_split == 'test': | |
self.cam_param = {} | |
joint_cam = data['joint_cam'] | |
if joint_cam is not None: | |
dummy_cord = False | |
joint_cam[:,:,:3] = joint_cam[:,:,:3] - joint_cam[ | |
:, self.joint_set['root_joint_idx'], None, :3] # root-relative | |
else: | |
# dummy cord as joint_cam | |
dummy_cord = True | |
joint_cam = np.zeros( | |
(num_person, self.joint_set['joint_num'], 3), | |
dtype=np.float32) | |
joint_img = data['joint_img'] | |
joint_img_aug, joint_cam_wo_ra, joint_cam_ra, joint_trunc = \ | |
process_db_coord_batch_no_valid( | |
joint_img, joint_cam, do_flip, img_shape, | |
self.joint_set['flip_pairs'], img2bb_trans, rot, | |
self.joint_set['joints_name'], smpl_x.joints_name, | |
cropped_img_shape) | |
# smplx coordinates and parameters | |
smplx_param = data['smplx_param'] | |
# smplx_cam_trans = np.array( | |
# smplx_param['trans']) if 'trans' in smplx_param else None | |
# TODO: remove this, seperate smpl and smplx | |
smplx_pose, smplx_shape, smplx_expr, smplx_pose_valid, \ | |
smplx_joint_valid, smplx_expr_valid, smplx_shape_valid = \ | |
process_human_model_output_batch_simplify( | |
smplx_param, do_flip, rot, as_smplx) | |
# if cam not provided, we take joint_img as smplx joint 2d, | |
# which is commonly the case for our processed humandata | |
if self.use_betas_neutral: | |
smplx_shape = smplx_param['betas_neutral'].reshape( | |
num_person, -1) | |
smplx_shape[(np.abs(smplx_shape) > 3).any(axis=1)] = 0. | |
smplx_shape = smplx_shape.reshape(num_person, -1) | |
# smplx_pose_valid = np.tile(smplx_pose_valid[:,:, None], (1, 3)).reshape(num_person,-1) | |
smplx_joint_valid = smplx_joint_valid[:, :, None] | |
# if not (smplx_shape == 0).all(): | |
# smplx_shape_valid = True | |
# else: | |
# smplx_shape_valid = False | |
lhand_bbox_center_list = [] | |
lhand_bbox_valid_list = [] | |
lhand_bbox_size_list = [] | |
lhand_bbox_list = [] | |
face_bbox_center_list = [] | |
face_bbox_size_list = [] | |
face_bbox_valid_list = [] | |
face_bbox_list = [] | |
rhand_bbox_center_list = [] | |
rhand_bbox_valid_list = [] | |
rhand_bbox_size_list = [] | |
rhand_bbox_list = [] | |
body_bbox_center_list = [] | |
body_bbox_size_list = [] | |
body_bbox_valid_list = [] | |
body_bbox_list = [] | |
for i in range(num_person): | |
lhand_bbox, lhand_bbox_valid = self.process_hand_face_bbox( | |
data['lhand_bbox'][i], do_flip, img_shape, img2bb_trans, | |
cropped_img_shape) | |
rhand_bbox, rhand_bbox_valid = self.process_hand_face_bbox( | |
data['rhand_bbox'][i], do_flip, img_shape, img2bb_trans, | |
cropped_img_shape) | |
face_bbox, face_bbox_valid = self.process_hand_face_bbox( | |
data['face_bbox'][i], do_flip, img_shape, img2bb_trans, | |
cropped_img_shape) | |
body_bbox, body_bbox_valid = self.process_hand_face_bbox( | |
data['bbox'][i], do_flip, img_shape, img2bb_trans, | |
cropped_img_shape) | |
if do_flip: | |
lhand_bbox, rhand_bbox = rhand_bbox, lhand_bbox | |
lhand_bbox_valid, rhand_bbox_valid = rhand_bbox_valid, lhand_bbox_valid | |
body_bbox_list.append(body_bbox) | |
lhand_bbox_list.append(lhand_bbox) | |
rhand_bbox_list.append(rhand_bbox) | |
face_bbox_list.append(face_bbox) | |
lhand_bbox_center = (lhand_bbox[0] + lhand_bbox[1]) / 2. | |
rhand_bbox_center = (rhand_bbox[0] + rhand_bbox[1]) / 2. | |
face_bbox_center = (face_bbox[0] + face_bbox[1]) / 2. | |
body_bbox_center = (body_bbox[0] + body_bbox[1]) / 2. | |
lhand_bbox_size = lhand_bbox[1] - lhand_bbox[0] | |
rhand_bbox_size = rhand_bbox[1] - rhand_bbox[0] | |
face_bbox_size = face_bbox[1] - face_bbox[0] | |
body_bbox_size = body_bbox[1] - body_bbox[0] | |
lhand_bbox_center_list.append(lhand_bbox_center) | |
lhand_bbox_valid_list.append(lhand_bbox_valid) | |
lhand_bbox_size_list.append(lhand_bbox_size) | |
face_bbox_center_list.append(face_bbox_center) | |
face_bbox_size_list.append(face_bbox_size) | |
face_bbox_valid_list.append(face_bbox_valid) | |
rhand_bbox_center_list.append(rhand_bbox_center) | |
rhand_bbox_valid_list.append(rhand_bbox_valid) | |
rhand_bbox_size_list.append(rhand_bbox_size) | |
body_bbox_center_list.append(body_bbox_center) | |
body_bbox_size_list.append(body_bbox_size) | |
body_bbox_valid_list.append(body_bbox_valid) | |
body_bbox = np.stack(body_bbox_list, axis=0) | |
lhand_bbox = np.stack(lhand_bbox_list, axis=0) | |
rhand_bbox = np.stack(rhand_bbox_list, axis=0) | |
face_bbox = np.stack(face_bbox_list, axis=0) | |
lhand_bbox_center = np.stack(lhand_bbox_center_list, axis=0) | |
lhand_bbox_valid = np.stack(lhand_bbox_valid_list, axis=0) | |
lhand_bbox_size = np.stack(lhand_bbox_size_list, axis=0) | |
face_bbox_center = np.stack(face_bbox_center_list, axis=0) | |
face_bbox_size = np.stack(face_bbox_size_list, axis=0) | |
face_bbox_valid = np.stack(face_bbox_valid_list, axis=0) | |
body_bbox_center = np.stack(body_bbox_center_list, axis=0) | |
body_bbox_size = np.stack(body_bbox_size_list, axis=0) | |
body_bbox_valid = np.stack(body_bbox_valid_list, axis=0) | |
rhand_bbox_center = np.stack(rhand_bbox_center_list, axis=0) | |
rhand_bbox_valid = np.stack(rhand_bbox_valid_list, axis=0) | |
rhand_bbox_size = np.stack(rhand_bbox_size_list, axis=0) | |
inputs = {'img': img} | |
targets = { | |
# keypoints2d, [0,img_w],[0,img_h] -> [0,1] -> [0,output_hm_shape] | |
'joint_img': joint_img_aug, | |
# projected smplx if valid cam_param, else same as keypoints2d | |
# joint_cam, kp3d wo ra # raw kps3d probably without ra | |
'joint_cam': joint_cam_wo_ra, | |
'ann_idx': idx, | |
# kps3d with body, face, hand ra | |
'smplx_joint_cam': joint_cam_ra, | |
'smplx_pose': smplx_pose, | |
'smplx_shape': smplx_shape, | |
'smplx_expr': smplx_expr, | |
'lhand_bbox_center': lhand_bbox_center, | |
'lhand_bbox_size': lhand_bbox_size, | |
'rhand_bbox_center': rhand_bbox_center, | |
'rhand_bbox_size': rhand_bbox_size, | |
'face_bbox_center': face_bbox_center, | |
'face_bbox_size': face_bbox_size, | |
'body_bbox_center': body_bbox_center, | |
'body_bbox_size': body_bbox_size, | |
'body_bbox': body_bbox.reshape(-1,4), | |
'lhand_bbox': lhand_bbox.reshape(-1,4), | |
'rhand_bbox': rhand_bbox.reshape(-1,4), | |
'face_bbox': face_bbox.reshape(-1,4), | |
'gender': gender, | |
'bb2img_trans': bb2img_trans, | |
} | |
if self.body_only: | |
meta_info = { | |
'joint_trunc': joint_trunc, | |
'smplx_pose_valid': smplx_pose_valid, | |
'smplx_shape_valid': float(smplx_shape_valid), | |
'smplx_expr_valid': smplx_expr_valid, | |
'is_3D': float(False) if dummy_cord else float(True), | |
'lhand_bbox_valid': lhand_bbox_valid, | |
'rhand_bbox_valid': rhand_bbox_valid, | |
'face_bbox_valid': face_bbox_valid, | |
'body_bbox_valid': body_bbox_valid, | |
'img_shape': np.array(img.shape[:2]), | |
'ori_shape':data['img_shape'], | |
'idx': idx | |
} | |
else: | |
meta_info = { | |
'joint_trunc': joint_trunc, | |
'smplx_pose_valid': smplx_pose_valid, | |
'smplx_shape_valid': smplx_shape_valid, | |
'smplx_expr_valid': smplx_expr_valid, | |
'is_3D': float(False) if dummy_cord else float(True), | |
'lhand_bbox_valid': lhand_bbox_valid, | |
'rhand_bbox_valid': rhand_bbox_valid, | |
'face_bbox_valid': face_bbox_valid, | |
'body_bbox_valid': body_bbox_valid, | |
'img_shape': np.array(img.shape[:2]), | |
'ori_shape':data['img_shape'], | |
'idx': idx | |
} | |
result = {**inputs, **targets, **meta_info} | |
result = self.normalize(result) | |
result = self.format(result) | |
return result | |
def process_hand_face_bbox(self, bbox, do_flip, img_shape, img2bb_trans, | |
input_img_shape): | |
if bbox is None: | |
bbox = np.array([0, 0, 1, 1], | |
dtype=np.float32).reshape(2, 2) # dummy value | |
bbox_valid = float(False) # dummy value | |
else: | |
# reshape to top-left (x,y) and bottom-right (x,y) | |
bbox = bbox.reshape(2, 2) | |
# flip augmentation | |
if do_flip: | |
bbox[:, 0] = img_shape[1] - bbox[:, 0] - 1 | |
bbox[0, 0], bbox[1, 0] = bbox[1, 0].copy(), bbox[ | |
0, 0].copy() # xmin <-> xmax swap | |
# make four points of the bbox | |
bbox = bbox.reshape(4).tolist() | |
xmin, ymin, xmax, ymax = bbox | |
bbox = np.array( | |
[[xmin, ymin], [xmax, ymin], [xmax, ymax], [xmin, ymax]], | |
dtype=np.float32).reshape(4, 2) | |
# affine transformation (crop, rotation, scale) | |
bbox_xy1 = np.concatenate((bbox, np.ones_like(bbox[:, :1])), 1) | |
bbox = np.dot(img2bb_trans, | |
bbox_xy1.transpose(1, 0)).transpose(1, 0)[:, :2] | |
# print(bbox) | |
# bbox[:, 0] = bbox[:, 0] / input_img_shape[1] * cfg.output_hm_shape[2] | |
# bbox[:, 1] = bbox[:, 1] / input_img_shape[0] * cfg.output_hm_shape[1] | |
bbox[:, 0] /= input_img_shape[1] | |
bbox[:, 1] /= input_img_shape[0] | |
# make box a rectangle without rotation | |
if np.max(bbox[:,0])<=0 or np.min(bbox[:,0])>=1 or np.max(bbox[:,1])<=0 or np.min(bbox[:,1])>=1: | |
bbox_valid = float(False) | |
bbox = np.array([0, 0, 1, 1], dtype=np.float32) | |
else: | |
xmin = np.max([np.min(bbox[:, 0]), 0]) | |
xmax = np.min([np.max(bbox[:, 0]), 1]) | |
ymin = np.max([np.min(bbox[:, 1]), 0]) | |
ymax = np.min([np.max(bbox[:, 1]), 1]) | |
bbox = np.array([xmin, ymin, xmax, ymax], dtype=np.float32) | |
bbox = np.clip(bbox,0,1) | |
bbox_valid = float(True) | |
bbox = bbox.reshape(2, 2) | |
return bbox, bbox_valid | |
def evaluate(self, outs, cur_sample_idx=None): | |
annots = self.datalist | |
sample_num = len(outs) | |
eval_result = { | |
'pa_mpvpe_all': [], | |
'pa_mpvpe_l_hand': [], | |
'pa_mpvpe_r_hand': [], | |
'pa_mpvpe_hand': [], | |
'pa_mpvpe_face': [], | |
'mpvpe_all': [], | |
'mpvpe_l_hand': [], | |
'mpvpe_r_hand': [], | |
'mpvpe_hand': [], | |
'mpvpe_face': [], | |
'pa_mpjpe_body': [], | |
'pa_mpjpe_l_hand': [], | |
'pa_mpjpe_r_hand': [], | |
'pa_mpjpe_hand': [] | |
} | |
for n in range(sample_num): | |
out = outs[n] | |
ann_idx = out['gt_ann_idx'] | |
mesh_gt = out['smplx_mesh_cam_pseudo_gt'] | |
mesh_out = out['smplx_mesh_cam'] | |
cam_trans = out['cam_trans'] | |
ann_idx = out['gt_ann_idx'] | |
img_path = [] | |
for ann_id in ann_idx: | |
img_path.append(annots[ann_id]['img_path']) | |
eval_result['img_path'] = img_path | |
eval_result['ann_idx'] = ann_idx | |
img = out['img'] | |
# MPVPE from all vertices | |
mesh_out_align = mesh_out - np.dot( | |
smpl_x.J_regressor, | |
mesh_out)[smpl_x.J_regressor_idx['pelvis'], None, :] + np.dot( | |
smpl_x.J_regressor, | |
mesh_gt)[smpl_x.J_regressor_idx['pelvis'], None, :] | |
eval_result['mpvpe_all'].append( | |
np.sqrt(np.sum( | |
(mesh_out_align - mesh_gt)**2, 1)).mean() * 1000) | |
mesh_out_align = rigid_align(mesh_out, mesh_gt) | |
eval_result['pa_mpvpe_all'].append( | |
np.sqrt(np.sum( | |
(mesh_out_align - mesh_gt)**2, 1)).mean() * 1000) | |
# MPVPE from hand vertices | |
mesh_gt_lhand = mesh_gt[smpl_x.hand_vertex_idx['left_hand'], :] | |
mesh_out_lhand = mesh_out[smpl_x.hand_vertex_idx['left_hand'], :] | |
mesh_gt_rhand = mesh_gt[smpl_x.hand_vertex_idx['right_hand'], :] | |
mesh_out_rhand = mesh_out[smpl_x.hand_vertex_idx['right_hand'], :] | |
mesh_out_lhand_align = mesh_out_lhand - np.dot( | |
smpl_x.J_regressor, | |
mesh_out)[smpl_x.J_regressor_idx['lwrist'], None, :] + np.dot( | |
smpl_x.J_regressor, | |
mesh_gt)[smpl_x.J_regressor_idx['lwrist'], None, :] | |
mesh_out_rhand_align = mesh_out_rhand - np.dot( | |
smpl_x.J_regressor, | |
mesh_out)[smpl_x.J_regressor_idx['rwrist'], None, :] + np.dot( | |
smpl_x.J_regressor, | |
mesh_gt)[smpl_x.J_regressor_idx['rwrist'], None, :] | |
eval_result['mpvpe_l_hand'].append( | |
np.sqrt(np.sum( | |
(mesh_out_lhand_align - mesh_gt_lhand)**2, 1)).mean() * | |
1000) | |
eval_result['mpvpe_r_hand'].append( | |
np.sqrt(np.sum( | |
(mesh_out_rhand_align - mesh_gt_rhand)**2, 1)).mean() * | |
1000) | |
eval_result['mpvpe_hand'].append( | |
(np.sqrt(np.sum( | |
(mesh_out_lhand_align - mesh_gt_lhand)**2, 1)).mean() * | |
1000 + | |
np.sqrt(np.sum( | |
(mesh_out_rhand_align - mesh_gt_rhand)**2, 1)).mean() * | |
1000) / 2.) | |
mesh_out_lhand_align = rigid_align(mesh_out_lhand, mesh_gt_lhand) | |
mesh_out_rhand_align = rigid_align(mesh_out_rhand, mesh_gt_rhand) | |
eval_result['pa_mpvpe_l_hand'].append( | |
np.sqrt(np.sum( | |
(mesh_out_lhand_align - mesh_gt_lhand)**2, 1)).mean() * | |
1000) | |
eval_result['pa_mpvpe_r_hand'].append( | |
np.sqrt(np.sum( | |
(mesh_out_rhand_align - mesh_gt_rhand)**2, 1)).mean() * | |
1000) | |
eval_result['pa_mpvpe_hand'].append( | |
(np.sqrt(np.sum( | |
(mesh_out_lhand_align - mesh_gt_lhand)**2, 1)).mean() * | |
1000 + | |
np.sqrt(np.sum( | |
(mesh_out_rhand_align - mesh_gt_rhand)**2, 1)).mean() * | |
1000) / 2.) | |
if self.__class__.__name__ == 'UBody': | |
joint_gt_body_wo_trans = np.dot(smpl_x.j14_regressor, | |
mesh_gt) | |
import ipdb;ipdb.set_trace() | |
img_wh = out['gt_img_shape'].flip(-1) | |
joint_gt_body_proj = project_points_new( | |
points_3d=joint_gt_body_wo_trans, | |
pred_cam=cam_trans, | |
focal_length=5000, | |
camera_center=img_wh/2 | |
) # origin image space | |
joint_gt_lhand_wo_trans = np.dot( | |
smpl_x.orig_hand_regressor['left'], mesh_gt) | |
joint_gt_lhand_proj = project_points_new( | |
points_3d=joint_gt_lhand_wo_trans, | |
pred_cam=cam_trans, | |
focal_length=5000, | |
camera_center=img_wh/2 | |
) # origin image space | |
joint_gt_rhand_wo_trans = np.dot( | |
smpl_x.orig_hand_regressor['left'], mesh_gt) | |
joint_gt_rhand_proj = project_points_new( | |
points_3d=joint_gt_rhand_wo_trans, | |
pred_cam=cam_trans, | |
focal_length=5000, | |
camera_center=img_wh/2 | |
) # origin image space | |
mesh_gt_proj = project_points_new( | |
points_3d=mesh_gt, | |
pred_cam=cam_trans, | |
focal_length=5000, | |
camera_center=img_wh/2) | |
joint_gt_body_valid = self.validate_within_img( | |
img, joint_gt_body_proj) | |
joint_gt_lhand_valid = self.validate_within_img( | |
img, joint_gt_lhand_proj) | |
joint_gt_rhand_valid = self.validate_within_img( | |
img, joint_gt_rhand_proj) | |
mesh_valid = self.validate_within_img(img, mesh_gt_proj) | |
mesh_lhand_valid = mesh_valid[smpl_x.hand_vertex_idx['left_hand']] | |
mesh_rhand_valid = mesh_valid[smpl_x.hand_vertex_idx['right_hand']] | |
mesh_face_valid = mesh_valid[smpl_x.face_vertex_idx] | |
# MPVPE from face vertices | |
mesh_gt_face = mesh_gt[smpl_x.face_vertex_idx, :] | |
mesh_out_face = mesh_out[smpl_x.face_vertex_idx, :] | |
mesh_out_face_align = mesh_out_face - np.dot( | |
smpl_x.J_regressor, | |
mesh_out)[smpl_x.J_regressor_idx['neck'], None, :] + np.dot( | |
smpl_x.J_regressor, | |
mesh_gt)[smpl_x.J_regressor_idx['neck'], None, :] | |
eval_result['mpvpe_face'].append( | |
np.sqrt(np.sum( | |
(mesh_out_face_align - mesh_gt_face)**2, 1)).mean() * 1000) | |
mesh_out_face_align = rigid_align(mesh_out_face, mesh_gt_face) | |
eval_result['pa_mpvpe_face'].append( | |
np.sqrt(np.sum( | |
(mesh_out_face_align - mesh_gt_face)**2, 1)).mean() * 1000) | |
# MPJPE from body joints | |
joint_gt_body = np.dot(smpl_x.j14_regressor, mesh_gt) | |
joint_out_body = np.dot(smpl_x.j14_regressor, mesh_out) | |
joint_out_body_align = rigid_align(joint_out_body, joint_gt_body) | |
eval_result['pa_mpjpe_body'].append( | |
np.sqrt(np.sum((joint_out_body_align - joint_gt_body)**2, | |
1))[joint_gt_body_valid].mean() * 1000) | |
# eval_result['pa_mpjpe_body'].append( | |
# np.sqrt(np.sum( | |
# (joint_out_body_align - joint_gt_body)**2, 1)).mean() * | |
# 1000) | |
# MPJPE from hand joints | |
joint_gt_lhand = np.dot(smpl_x.orig_hand_regressor['left'], | |
mesh_gt) | |
joint_out_lhand = np.dot(smpl_x.orig_hand_regressor['left'], | |
mesh_out) | |
joint_out_lhand_align = rigid_align(joint_out_lhand, | |
joint_gt_lhand) | |
joint_gt_rhand = np.dot(smpl_x.orig_hand_regressor['right'], | |
mesh_gt) | |
joint_out_rhand = np.dot(smpl_x.orig_hand_regressor['right'], | |
mesh_out) | |
joint_out_rhand_align = rigid_align(joint_out_rhand, | |
joint_gt_rhand) | |
# if self.__class__.__name__ == 'UBody': | |
if sum(joint_gt_lhand_valid) != 0: | |
pa_mpjpe_lhand = np.sqrt( | |
np.sum((joint_out_lhand_align - joint_gt_lhand)**2, | |
1))[joint_gt_lhand_valid].mean() * 1000 | |
pa_mpjpe_hand.append(pa_mpjpe_lhand) | |
eval_result['pa_mpjpe_l_hand'].append(pa_mpjpe_lhand) | |
if sum(joint_gt_rhand_valid) != 0: | |
pa_mpjpe_rhand = np.sqrt( | |
np.sum((joint_out_rhand_align - joint_gt_rhand)**2, | |
1))[joint_gt_rhand_valid].mean() * 1000 | |
pa_mpjpe_hand.append(pa_mpjpe_rhand) | |
eval_result['pa_mpjpe_r_hand'].append(pa_mpjpe_rhand) | |
if len(pa_mpjpe_hand) > 0: | |
eval_result['pa_mpjpe_hand'].append(np.mean(pa_mpjpe_hand)) | |
eval_result['pa_mpjpe_l_hand'].append( | |
np.sqrt(np.sum( | |
(joint_out_lhand_align - joint_gt_lhand)**2, 1)).mean() * | |
1000) | |
eval_result['pa_mpjpe_r_hand'].append( | |
np.sqrt(np.sum( | |
(joint_out_rhand_align - joint_gt_rhand)**2, 1)).mean() * | |
1000) | |
eval_result['pa_mpjpe_hand'].append( | |
(np.sqrt(np.sum( | |
(joint_out_lhand_align - joint_gt_lhand)**2, 1)).mean() * | |
1000 + | |
np.sqrt(np.sum( | |
(joint_out_rhand_align - joint_gt_rhand)**2, 1)).mean() * | |
1000) / 2.) | |
return eval_result | |
def print_eval_result(self, eval_result): | |
print(f'======{cfg.testset}======') | |
print('PA MPVPE (All): %.2f mm' % np.mean(eval_result['pa_mpvpe_all'])) | |
print('PA MPVPE (L-Hands): %.2f mm' % | |
np.mean(eval_result['pa_mpvpe_l_hand'])) | |
print('PA MPVPE (R-Hands): %.2f mm' % | |
np.mean(eval_result['pa_mpvpe_r_hand'])) | |
print('PA MPVPE (Hands): %.2f mm' % | |
np.mean(eval_result['pa_mpvpe_hand'])) | |
print('PA MPVPE (Face): %.2f mm' % | |
np.mean(eval_result['pa_mpvpe_face'])) | |
print() | |
print('MPVPE (All): %.2f mm' % np.mean(eval_result['mpvpe_all'])) | |
print('MPVPE (L-Hands): %.2f mm' % | |
np.mean(eval_result['mpvpe_l_hand'])) | |
print('MPVPE (R-Hands): %.2f mm' % | |
np.mean(eval_result['mpvpe_r_hand'])) | |
print('MPVPE (Hands): %.2f mm' % np.mean(eval_result['mpvpe_hand'])) | |
print('MPVPE (Face): %.2f mm' % np.mean(eval_result['mpvpe_face'])) | |
print() | |
print('PA MPJPE (Body): %.2f mm' % | |
np.mean(eval_result['pa_mpjpe_body'])) | |
print('PA MPJPE (L-Hands): %.2f mm' % | |
np.mean(eval_result['pa_mpjpe_l_hand'])) | |
print('PA MPJPE (R-Hands): %.2f mm' % | |
np.mean(eval_result['pa_mpjpe_r_hand'])) | |
print('PA MPJPE (Hands): %.2f mm' % | |
np.mean(eval_result['pa_mpjpe_hand'])) | |
f = open(os.path.join(cfg.result_dir, 'result.txt'), 'w') | |
f.write(f'{cfg.testset} dataset \n') | |
f.write('PA MPVPE (All): %.2f mm\n' % | |
np.mean(eval_result['pa_mpvpe_all'])) | |
f.write('PA MPVPE (L-Hands): %.2f mm' % | |
np.mean(eval_result['pa_mpvpe_l_hand'])) | |
f.write('PA MPVPE (R-Hands): %.2f mm' % | |
np.mean(eval_result['pa_mpvpe_r_hand'])) | |
f.write('PA MPVPE (Hands): %.2f mm\n' % | |
np.mean(eval_result['pa_mpvpe_hand'])) | |
f.write('PA MPVPE (Face): %.2f mm\n' % | |
np.mean(eval_result['pa_mpvpe_face'])) | |
f.write('MPVPE (All): %.2f mm\n' % np.mean(eval_result['mpvpe_all'])) | |
f.write('MPVPE (L-Hands): %.2f mm' % | |
np.mean(eval_result['mpvpe_l_hand'])) | |
f.write('MPVPE (R-Hands): %.2f mm' % | |
np.mean(eval_result['mpvpe_r_hand'])) | |
f.write('MPVPE (Hands): %.2f mm' % np.mean(eval_result['mpvpe_hand'])) | |
f.write('MPVPE (Face): %.2f mm\n' % np.mean(eval_result['mpvpe_face'])) | |
f.write('PA MPJPE (Body): %.2f mm\n' % | |
np.mean(eval_result['pa_mpjpe_body'])) | |
f.write('PA MPJPE (L-Hands): %.2f mm' % | |
np.mean(eval_result['pa_mpjpe_l_hand'])) | |
f.write('PA MPJPE (R-Hands): %.2f mm' % | |
np.mean(eval_result['pa_mpjpe_r_hand'])) | |
f.write('PA MPJPE (Hands): %.2f mm\n' % | |
np.mean(eval_result['pa_mpjpe_hand'])) | |
def validate_within_img_batch( | |
self, img_wh, points): # check whether the points is within the image | |
# img: (h, w, c), points: (num_points, 2) | |
valid_mask = np.logical_and((points-img_wh[:,None])<0,points>0) | |
valid_mask = np.logical_and(valid_mask[:,:,0],valid_mask[:,:,1]) | |
return valid_mask | |
def decompress_keypoints(self, humandata) -> None: | |
"""If a key contains 'keypoints', and f'{key}_mask' is in self.keys(), | |
invalid zeros will be inserted to the right places and f'{key}_mask' | |
will be unlocked. | |
Raises: | |
KeyError: | |
A key contains 'keypoints' has been found | |
but its corresponding mask is missing. | |
""" | |
assert bool(humandata['__keypoints_compressed__']) is True | |
key_pairs = [] | |
for key in humandata.files: | |
if key not in KPS2D_KEYS + KPS3D_KEYS: | |
continue | |
mask_key = f'{key}_mask' | |
if mask_key in humandata.files: | |
print(f'Decompress {key}...') | |
key_pairs.append([key, mask_key]) | |
decompressed_dict = {} | |
for kpt_key, mask_key in key_pairs: | |
mask_array = np.asarray(humandata[mask_key]) | |
compressed_kpt = humandata[kpt_key] | |
kpt_array = \ | |
self.add_zero_pad(compressed_kpt, mask_array) | |
decompressed_dict[kpt_key] = kpt_array | |
del humandata | |
return decompressed_dict | |
def add_zero_pad(self, compressed_array: np.ndarray, | |
mask_array: np.ndarray) -> np.ndarray: | |
"""Pad zeros to a compressed keypoints array. | |
Args: | |
compressed_array (np.ndarray): | |
A compressed keypoints array. | |
mask_array (np.ndarray): | |
The mask records compression relationship. | |
Returns: | |
np.ndarray: | |
A keypoints array in full-size. | |
""" | |
assert mask_array.sum() == compressed_array.shape[1] | |
data_len, _, dim = compressed_array.shape | |
mask_len = mask_array.shape[0] | |
ret_value = np.zeros(shape=[data_len, mask_len, dim], | |
dtype=compressed_array.dtype) | |
valid_mask_index = np.where(mask_array == 1)[0] | |
ret_value[:, valid_mask_index, :] = compressed_array | |
return ret_value | |