Spaces:
Sleeping
Sleeping
import os | |
import os.path as osp | |
import numpy as np | |
import torch | |
import cv2 | |
import json | |
import copy | |
import csv | |
from pycocotools.coco import COCO | |
from config.config import cfg | |
from util.human_models import smpl_x | |
from util.transforms import world2cam, cam2pixel, rigid_align | |
from humandata import HumanDataset | |
from util.transforms import rigid_align, rigid_align_batch | |
class EgoBody_Kinect(HumanDataset): | |
def __init__(self, transform, data_split): | |
super(EgoBody_Kinect, self).__init__(transform, data_split) | |
if self.data_split == 'train': | |
filename = 'data/preprocessed_npz/multihuman_data/egobody_kinect_train_multi_080824.npz' | |
self.annot_path_cache = 'data/preprocessed_npz/cache/egobody_kinect_train_cache_080824.npz' | |
self.sample_interval = 10 | |
else: | |
filename = 'data/preprocessed_npz/egobody_kinect_test_230503_043_fix_betas_multi.npz' | |
self.annot_path_cache = 'data/preprocessed_npz/egobody_kinect_test_230503_043_fix_betas_multi_cache_100.npz' | |
self.sample_interval = 100 | |
self.use_betas_neutral = getattr(cfg, 'egobody_fix_betas', False) | |
self.img_dir = 'data/osx_data/EgoBody' | |
self.annot_path = filename | |
self.use_cache = getattr(cfg, 'use_cache', False) | |
self.img_shape = (1080, 1920) # (h, w) | |
self.cam_param = {} | |
# check image shape | |
img_path = osp.join(self.img_dir, | |
np.load(self.annot_path)['image_path'][0]) | |
img_shape = cv2.imread(img_path).shape[:2] | |
assert self.img_shape == img_shape, 'image shape is incorrect: {} vs {}'.format( | |
self.img_shape, img_shape) | |
# load data or cache | |
if self.use_cache and osp.isfile(self.annot_path_cache): | |
print( | |
f'[{self.__class__.__name__}] loading cache from {self.annot_path_cache}' | |
) | |
self.datalist = self.load_cache(self.annot_path_cache) | |
else: | |
if self.use_cache: | |
print( | |
f'[{self.__class__.__name__}] Cache not found, generating cache...' | |
) | |
self.datalist = self.load_data(train_sample_interval=self.sample_interval) | |
if self.use_cache: | |
self.save_cache(self.annot_path_cache, self.datalist) | |
def evaluate(self, outs, cur_sample_idx): | |
annots = self.datalist | |
sample_num = len(outs) | |
eval_result = { | |
'pa_mpvpe_all': [], | |
'pa_mpvpe_l_hand': [], | |
'pa_mpvpe_r_hand': [], | |
'pa_mpvpe_hand': [], | |
'pa_mpvpe_face': [], | |
'mpvpe_all': [], | |
'mpvpe_l_hand': [], | |
'mpvpe_r_hand': [], | |
'mpvpe_hand': [], | |
'mpvpe_face': [] | |
} | |
vis = getattr(cfg, 'vis', False) | |
vis_save_dir = cfg.vis_dir | |
for n in range(sample_num): | |
annot = annots[cur_sample_idx + n] | |
out = outs[n] | |
mesh_gt = out['smplx_mesh_cam_target'] | |
mesh_out = out['smplx_mesh_cam'] | |
ann_idx = out['gt_ann_idx'] | |
img_path = [] | |
for ann_id in ann_idx: | |
img_path.append(annots[ann_id]['img_path']) | |
eval_result['img_path'] = img_path | |
eval_result['ann_idx'] = ann_idx | |
# MPVPE from all vertices | |
mesh_out_align = \ | |
mesh_out - np.dot( | |
smpl_x.J_regressor, mesh_out).transpose(1,0,2)[:, smpl_x.J_regressor_idx['pelvis'], None, :] + \ | |
np.dot(smpl_x.J_regressor, mesh_gt).transpose(1,0,2)[:, smpl_x.J_regressor_idx['pelvis'], None, :] | |
eval_result['mpvpe_all'].extend( | |
np.sqrt(np.sum( | |
(mesh_out_align - mesh_gt)**2, -1)).mean(-1) * 1000) | |
mesh_out_align = rigid_align_batch(mesh_out, mesh_gt) | |
eval_result['pa_mpvpe_all'].extend( | |
np.sqrt(np.sum( | |
(mesh_out_align - mesh_gt)**2, -1)).mean(-1) * 1000) | |
# MPVPE from hand vertices | |
mesh_gt_lhand = mesh_gt[:, smpl_x.hand_vertex_idx['left_hand'], :] | |
mesh_out_lhand = mesh_out[:, smpl_x.hand_vertex_idx['left_hand'], :] | |
mesh_gt_rhand = mesh_gt[:, smpl_x.hand_vertex_idx['right_hand'], :] | |
mesh_out_rhand = mesh_out[:, smpl_x.hand_vertex_idx['right_hand'], :] | |
mesh_out_lhand_align = \ | |
mesh_out_lhand - \ | |
np.dot(smpl_x.J_regressor, mesh_out).transpose(1,0,2)[:, smpl_x.J_regressor_idx['lwrist'], None, :] + \ | |
np.dot(smpl_x.J_regressor, mesh_gt).transpose(1,0,2)[:, smpl_x.J_regressor_idx['lwrist'], None, :] | |
mesh_out_rhand_align = \ | |
mesh_out_rhand - \ | |
np.dot(smpl_x.J_regressor, mesh_out).transpose(1,0,2)[:, smpl_x.J_regressor_idx['rwrist'], None, :] + \ | |
np.dot(smpl_x.J_regressor, mesh_gt).transpose(1,0,2)[:, smpl_x.J_regressor_idx['rwrist'], None, :] | |
eval_result['mpvpe_l_hand'].extend( | |
np.sqrt(np.sum( | |
(mesh_out_lhand_align - mesh_gt_lhand)**2, -1)).mean(-1) * | |
1000) | |
eval_result['mpvpe_r_hand'].extend( | |
np.sqrt(np.sum( | |
(mesh_out_rhand_align - mesh_gt_rhand)**2, -1)).mean(-1) * | |
1000) | |
eval_result['mpvpe_hand'].extend( | |
(np.sqrt(np.sum( | |
(mesh_out_lhand_align - mesh_gt_lhand)**2, -1)).mean(-1) * | |
1000 + | |
np.sqrt(np.sum( | |
(mesh_out_rhand_align - mesh_gt_rhand)**2, -1)).mean(-1) * | |
1000) / 2.) | |
mesh_out_lhand_align = rigid_align_batch(mesh_out_lhand, mesh_gt_lhand) | |
mesh_out_rhand_align = rigid_align_batch(mesh_out_rhand, mesh_gt_rhand) | |
eval_result['pa_mpvpe_l_hand'].extend( | |
np.sqrt(np.sum( | |
(mesh_out_lhand_align - mesh_gt_lhand)**2, -1)).mean(-1) * | |
1000) | |
eval_result['pa_mpvpe_r_hand'].extend( | |
np.sqrt(np.sum( | |
(mesh_out_rhand_align - mesh_gt_rhand)**2, -1)).mean(-1) * | |
1000) | |
eval_result['pa_mpvpe_hand'].extend( | |
(np.sqrt(np.sum( | |
(mesh_out_lhand_align - mesh_gt_lhand)**2, -1)).mean(-1) * | |
1000 + | |
np.sqrt(np.sum( | |
(mesh_out_rhand_align - mesh_gt_rhand)**2, -1)).mean(-1) * | |
1000) / 2.) | |
vis = False | |
if vis: | |
import mmcv | |
img = (out['img']).transpose(0,2,3,1) | |
img = mmcv.imdenormalize( | |
img=img[0], | |
mean=np.array([123.675, 116.28, 103.53]), | |
std=np.array([58.395, 57.12, 57.375]), | |
to_bgr=True).astype(np.uint8) | |
from detrsmpl.core.visualization.visualize_keypoints2d import visualize_kp2d | |
import ipdb;ipdb.set_trace() | |
visualize_kp2d( | |
out['smplx_joint_proj'][0][None], | |
image_array=img[None].copy(), | |
disable_limbs=True, | |
overwrite=True, | |
output_path='./figs/pred2d' | |
) | |
from pytorch3d.io import save_obj | |
save_obj('temp.obj',verts=out['smplx_mesh_cam'][0],faces=torch.tensor([])) | |
# MPVPE from face vertices | |
mesh_gt_face = mesh_gt[:, smpl_x.face_vertex_idx, :] | |
mesh_out_face = mesh_out[:, smpl_x.face_vertex_idx, :] | |
mesh_out_face_align = \ | |
mesh_out_face - \ | |
np.dot(smpl_x.J_regressor, mesh_out).transpose(1,0,2)[:, smpl_x.J_regressor_idx['neck'], None, :] + \ | |
np.dot(smpl_x.J_regressor, mesh_gt).transpose(1,0,2)[:, smpl_x.J_regressor_idx['neck'], None, :] | |
eval_result['mpvpe_face'].extend( | |
np.sqrt(np.sum( | |
(mesh_out_face_align - mesh_gt_face)**2, -1)).mean(-1) * 1000) | |
mesh_out_face_align = rigid_align_batch(mesh_out_face, mesh_gt_face) | |
eval_result['pa_mpvpe_face'].extend( | |
np.sqrt(np.sum( | |
(mesh_out_face_align - mesh_gt_face)**2, -1)).mean(-1) * 1000) | |
# for k,v in eval_result.items(): | |
# if k != 'img_path' and k != 'ann_idx': | |
# # import ipdb;ipdb.set_trace() | |
# if len(v)>1: | |
# eval_result[k] = np.concatenate(v,axis=0) | |
# else: | |
# eval_result[k] = np.array(v) | |
return eval_result |