Spaces:
Starting
on
L40S
Starting
on
L40S
import torch | |
import numpy as np | |
import scipy | |
from config.config import cfg | |
from torch.nn import functional as F | |
import torchgeometry as tgm | |
def cam2pixel(cam_coord, f, c): | |
x = cam_coord[:, 0] / cam_coord[:, 2] * f[0] + c[0] | |
y = cam_coord[:, 1] / cam_coord[:, 2] * f[1] + c[1] | |
z = cam_coord[:, 2] | |
return np.stack((x, y, z), 1) | |
def pixel2cam(pixel_coord, f, c): | |
x = (pixel_coord[:, 0] - c[0]) / f[0] * pixel_coord[:, 2] | |
y = (pixel_coord[:, 1] - c[1]) / f[1] * pixel_coord[:, 2] | |
z = pixel_coord[:, 2] | |
return np.stack((x, y, z), 1) | |
def world2cam(world_coord, R, t): | |
cam_coord = np.dot(R, world_coord.transpose(1, 0)).transpose( | |
1, 0) + t.reshape(1, 3) | |
return cam_coord | |
def cam2world(cam_coord, R, t): | |
world_coord = np.dot(np.linalg.inv(R), | |
(cam_coord - t.reshape(1, 3)).transpose(1, | |
0)).transpose( | |
1, 0) | |
return world_coord | |
def rigid_transform_3D(A, B): | |
n, dim = A.shape | |
centroid_A = np.mean(A, axis=0) | |
centroid_B = np.mean(B, axis=0) | |
H = np.dot(np.transpose(A - centroid_A), B - centroid_B) / n | |
U, s, V = np.linalg.svd(H) | |
R = np.dot(np.transpose(V), np.transpose(U)) | |
if np.linalg.det(R) < 0: | |
s[-1] = -s[-1] | |
V[2] = -V[2] | |
R = np.dot(np.transpose(V), np.transpose(U)) | |
varP = np.var(A, axis=0).sum() | |
c = 1 / varP * np.sum(s) | |
t = -np.dot(c * R, np.transpose(centroid_A)) + np.transpose(centroid_B) | |
return c, R, t | |
def rigid_transform_3D_batch(A, B): | |
n, dim = A.shape | |
centroid_A = np.mean(A, axis=0) | |
centroid_B = np.mean(B, axis=0) | |
H = np.dot(np.transpose(A - centroid_A), B - centroid_B) / n | |
U, s, V = np.linalg.svd(H) | |
R = np.dot(np.transpose(V), np.transpose(U)) | |
if np.linalg.det(R) < 0: | |
s[-1] = -s[-1] | |
V[2] = -V[2] | |
R = np.dot(np.transpose(V), np.transpose(U)) | |
varP = np.var(A, axis=0).sum() | |
c = 1 / varP * np.sum(s) | |
t = -np.dot(c * R, np.transpose(centroid_A)) + np.transpose(centroid_B) | |
A2 = np.transpose(np.dot(c * R, np.transpose(A))) + t | |
return A2 | |
def rigid_align(A, B): | |
c, R, t = rigid_transform_3D(A, B) | |
A2 = np.transpose(np.dot(c * R, np.transpose(A))) + t | |
return A2 | |
def rigid_align_batch(A, B): | |
A2 = np.stack([ | |
rigid_transform_3D_batch(a_i, b_i) | |
for a_i, b_i in zip(A, B) | |
]) | |
return A2 | |
def transform_joint_to_other_db(src_joint, src_name, dst_name): | |
src_joint_num = len(src_name) | |
dst_joint_num = len(dst_name) | |
new_joint = np.zeros(((dst_joint_num, ) + src_joint.shape[1:]), | |
dtype=np.float32) | |
for src_idx in range(len(src_name)): | |
name = src_name[src_idx] | |
if name in dst_name: | |
dst_idx = dst_name.index(name) | |
new_joint[dst_idx] = src_joint[src_idx] | |
return new_joint | |
def transform_joint_to_other_db_batch(src_joint, src_name, dst_name): | |
src_joint_num = len(src_name) | |
dst_joint_num = len(dst_name) | |
person_num = src_joint.shape[0] | |
new_joint = np.zeros((( | |
person_num, | |
dst_joint_num, | |
) + src_joint.shape[2:]), | |
dtype=np.float32) | |
for src_idx in range(len(src_name)): | |
name = src_name[src_idx] | |
if name in dst_name: | |
dst_idx = dst_name.index(name) | |
new_joint[:, dst_idx] = src_joint[:, src_idx] | |
return new_joint | |
def rot6d_to_axis_angle(x): | |
batch_size = x.shape[0] | |
x = x.view(-1, 3, 2) | |
a1 = x[:, :, 0] | |
a2 = x[:, :, 1] | |
b1 = F.normalize(a1) | |
b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1) | |
b3 = torch.cross(b1, b2) | |
rot_mat = torch.stack((b1, b2, b3), dim=-1) # 3x3 rotation matrix | |
rot_mat = torch.cat( | |
[rot_mat, torch.zeros( | |
(batch_size, 3, 1)).cuda().float()], 2) # 3x4 rotation matrix | |
axis_angle = tgm.rotation_matrix_to_angle_axis(rot_mat).reshape( | |
-1, 3) # axis-angle | |
axis_angle[torch.isnan(axis_angle)] = 0.0 | |
return axis_angle | |
def sample_joint_features(img_feat, joint_xy): | |
height, width = img_feat.shape[2:] | |
x = joint_xy[:, :, 0] / (width - 1) * 2 - 1 | |
y = joint_xy[:, :, 1] / (height - 1) * 2 - 1 | |
grid = torch.stack((x, y), 2)[:, :, None, :] | |
img_feat = F.grid_sample( | |
img_feat, grid, | |
align_corners=True)[:, :, :, 0] # batch_size, channel_dim, joint_num | |
img_feat = img_feat.permute( | |
0, 2, 1).contiguous() # batch_size, joint_num, channel_dim | |
return img_feat | |
def soft_argmax_2d(heatmap2d): | |
batch_size = heatmap2d.shape[0] | |
height, width = heatmap2d.shape[2:] | |
heatmap2d = heatmap2d.reshape((batch_size, -1, height * width)) | |
heatmap2d = F.softmax(heatmap2d, 2) | |
heatmap2d = heatmap2d.reshape((batch_size, -1, height, width)) | |
accu_x = heatmap2d.sum(dim=(2)) | |
accu_y = heatmap2d.sum(dim=(3)) | |
accu_x = accu_x * torch.arange(width).float().cuda()[None, None, :] | |
accu_y = accu_y * torch.arange(height).float().cuda()[None, None, :] | |
accu_x = accu_x.sum(dim=2, keepdim=True) | |
accu_y = accu_y.sum(dim=2, keepdim=True) | |
coord_out = torch.cat((accu_x, accu_y), dim=2) | |
return coord_out | |
def soft_argmax_3d(heatmap3d): | |
batch_size = heatmap3d.shape[0] | |
depth, height, width = heatmap3d.shape[2:] | |
heatmap3d = heatmap3d.reshape((batch_size, -1, depth * height * width)) | |
heatmap3d = F.softmax(heatmap3d, 2) | |
heatmap3d = heatmap3d.reshape((batch_size, -1, depth, height, width)) | |
accu_x = heatmap3d.sum(dim=(2, 3)) | |
accu_y = heatmap3d.sum(dim=(2, 4)) | |
accu_z = heatmap3d.sum(dim=(3, 4)) | |
accu_x = accu_x * torch.arange(width).float().cuda()[None, None, :] | |
accu_y = accu_y * torch.arange(height).float().cuda()[None, None, :] | |
accu_z = accu_z * torch.arange(depth).float().cuda()[None, None, :] | |
accu_x = accu_x.sum(dim=2, keepdim=True) | |
accu_y = accu_y.sum(dim=2, keepdim=True) | |
accu_z = accu_z.sum(dim=2, keepdim=True) | |
coord_out = torch.cat((accu_x, accu_y, accu_z), dim=2) | |
return coord_out | |
def restore_bbox(bbox_center, bbox_size, aspect_ratio, extension_ratio): | |
bbox = bbox_center.view(-1, 1, 2) + torch.cat( | |
(-bbox_size.view(-1, 1, 2) / 2., bbox_size.view(-1, 1, 2) / 2.), | |
1) # xyxy in (cfg.output_hm_shape[2], cfg.output_hm_shape[1]) space | |
bbox[:, :, | |
0] = bbox[:, :, 0] / cfg.output_hm_shape[2] * cfg.input_body_shape[1] | |
bbox[:, :, | |
1] = bbox[:, :, 1] / cfg.output_hm_shape[1] * cfg.input_body_shape[0] | |
bbox = bbox.view(-1, 4) | |
# xyxy -> xywh | |
bbox[:, 2] = bbox[:, 2] - bbox[:, 0] | |
bbox[:, 3] = bbox[:, 3] - bbox[:, 1] | |
# aspect ratio preserving bbox | |
w = bbox[:, 2] | |
h = bbox[:, 3] | |
c_x = bbox[:, 0] + w / 2. | |
c_y = bbox[:, 1] + h / 2. | |
mask1 = w > (aspect_ratio * h) | |
mask2 = w < (aspect_ratio * h) | |
h[mask1] = w[mask1] / aspect_ratio | |
w[mask2] = h[mask2] * aspect_ratio | |
bbox[:, 2] = w * extension_ratio | |
bbox[:, 3] = h * extension_ratio | |
bbox[:, 0] = c_x - bbox[:, 2] / 2. | |
bbox[:, 1] = c_y - bbox[:, 3] / 2. | |
# xywh -> xyxy | |
bbox[:, 2] = bbox[:, 2] + bbox[:, 0] | |
bbox[:, 3] = bbox[:, 3] + bbox[:, 1] | |
return bbox | |