AiOS / mmcv /tests /test_runner /test_checkpoint.py
ttxskk
update
d7e58f0
raw
history blame
17.1 kB
# Copyright (c) OpenMMLab. All rights reserved.
import sys
from collections import OrderedDict
from tempfile import TemporaryDirectory
from unittest.mock import MagicMock, patch
import pytest
import torch
import torch.nn as nn
import torch.optim as optim
from torch.nn.parallel import DataParallel
from mmcv.fileio.file_client import PetrelBackend
from mmcv.parallel.registry import MODULE_WRAPPERS
from mmcv.runner.checkpoint import (_load_checkpoint_with_prefix,
get_state_dict, load_checkpoint,
load_from_local, load_from_pavi,
save_checkpoint)
sys.modules['petrel_client'] = MagicMock()
sys.modules['petrel_client.client'] = MagicMock()
@MODULE_WRAPPERS.register_module()
class DDPWrapper:
def __init__(self, module):
self.module = module
class Block(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Conv2d(3, 3, 1)
self.norm = nn.BatchNorm2d(3)
class Model(nn.Module):
def __init__(self):
super().__init__()
self.block = Block()
self.conv = nn.Conv2d(3, 3, 1)
class Mockpavimodel:
def __init__(self, name='fakename'):
self.name = name
def download(self, file):
pass
def assert_tensor_equal(tensor_a, tensor_b):
assert tensor_a.eq(tensor_b).all()
def test_get_state_dict():
if torch.__version__ == 'parrots':
state_dict_keys = {
'block.conv.weight', 'block.conv.bias', 'block.norm.weight',
'block.norm.bias', 'block.norm.running_mean',
'block.norm.running_var', 'conv.weight', 'conv.bias'
}
else:
state_dict_keys = {
'block.conv.weight', 'block.conv.bias', 'block.norm.weight',
'block.norm.bias', 'block.norm.running_mean',
'block.norm.running_var', 'block.norm.num_batches_tracked',
'conv.weight', 'conv.bias'
}
model = Model()
state_dict = get_state_dict(model)
assert isinstance(state_dict, OrderedDict)
assert set(state_dict.keys()) == state_dict_keys
assert_tensor_equal(state_dict['block.conv.weight'],
model.block.conv.weight)
assert_tensor_equal(state_dict['block.conv.bias'], model.block.conv.bias)
assert_tensor_equal(state_dict['block.norm.weight'],
model.block.norm.weight)
assert_tensor_equal(state_dict['block.norm.bias'], model.block.norm.bias)
assert_tensor_equal(state_dict['block.norm.running_mean'],
model.block.norm.running_mean)
assert_tensor_equal(state_dict['block.norm.running_var'],
model.block.norm.running_var)
if torch.__version__ != 'parrots':
assert_tensor_equal(state_dict['block.norm.num_batches_tracked'],
model.block.norm.num_batches_tracked)
assert_tensor_equal(state_dict['conv.weight'], model.conv.weight)
assert_tensor_equal(state_dict['conv.bias'], model.conv.bias)
wrapped_model = DDPWrapper(model)
state_dict = get_state_dict(wrapped_model)
assert isinstance(state_dict, OrderedDict)
assert set(state_dict.keys()) == state_dict_keys
assert_tensor_equal(state_dict['block.conv.weight'],
wrapped_model.module.block.conv.weight)
assert_tensor_equal(state_dict['block.conv.bias'],
wrapped_model.module.block.conv.bias)
assert_tensor_equal(state_dict['block.norm.weight'],
wrapped_model.module.block.norm.weight)
assert_tensor_equal(state_dict['block.norm.bias'],
wrapped_model.module.block.norm.bias)
assert_tensor_equal(state_dict['block.norm.running_mean'],
wrapped_model.module.block.norm.running_mean)
assert_tensor_equal(state_dict['block.norm.running_var'],
wrapped_model.module.block.norm.running_var)
if torch.__version__ != 'parrots':
assert_tensor_equal(
state_dict['block.norm.num_batches_tracked'],
wrapped_model.module.block.norm.num_batches_tracked)
assert_tensor_equal(state_dict['conv.weight'],
wrapped_model.module.conv.weight)
assert_tensor_equal(state_dict['conv.bias'],
wrapped_model.module.conv.bias)
# wrapped inner module
for name, module in wrapped_model.module._modules.items():
module = DataParallel(module)
wrapped_model.module._modules[name] = module
state_dict = get_state_dict(wrapped_model)
assert isinstance(state_dict, OrderedDict)
assert set(state_dict.keys()) == state_dict_keys
assert_tensor_equal(state_dict['block.conv.weight'],
wrapped_model.module.block.module.conv.weight)
assert_tensor_equal(state_dict['block.conv.bias'],
wrapped_model.module.block.module.conv.bias)
assert_tensor_equal(state_dict['block.norm.weight'],
wrapped_model.module.block.module.norm.weight)
assert_tensor_equal(state_dict['block.norm.bias'],
wrapped_model.module.block.module.norm.bias)
assert_tensor_equal(state_dict['block.norm.running_mean'],
wrapped_model.module.block.module.norm.running_mean)
assert_tensor_equal(state_dict['block.norm.running_var'],
wrapped_model.module.block.module.norm.running_var)
if torch.__version__ != 'parrots':
assert_tensor_equal(
state_dict['block.norm.num_batches_tracked'],
wrapped_model.module.block.module.norm.num_batches_tracked)
assert_tensor_equal(state_dict['conv.weight'],
wrapped_model.module.conv.module.weight)
assert_tensor_equal(state_dict['conv.bias'],
wrapped_model.module.conv.module.bias)
def test_load_pavimodel_dist():
sys.modules['pavi'] = MagicMock()
sys.modules['pavi.modelcloud'] = MagicMock()
pavimodel = Mockpavimodel()
import pavi
pavi.modelcloud.get = MagicMock(return_value=pavimodel)
with pytest.raises(AssertionError):
# test pavi prefix
_ = load_from_pavi('MyPaviFolder/checkpoint.pth')
with pytest.raises(FileNotFoundError):
# there is not such checkpoint for us to load
_ = load_from_pavi('pavi://checkpoint.pth')
def test_load_checkpoint_with_prefix():
class FooModule(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(1, 2)
self.conv2d = nn.Conv2d(3, 1, 3)
self.conv2d_2 = nn.Conv2d(3, 2, 3)
model = FooModule()
nn.init.constant_(model.linear.weight, 1)
nn.init.constant_(model.linear.bias, 2)
nn.init.constant_(model.conv2d.weight, 3)
nn.init.constant_(model.conv2d.bias, 4)
nn.init.constant_(model.conv2d_2.weight, 5)
nn.init.constant_(model.conv2d_2.bias, 6)
with TemporaryDirectory():
torch.save(model.state_dict(), 'model.pth')
prefix = 'conv2d'
state_dict = _load_checkpoint_with_prefix(prefix, 'model.pth')
assert torch.equal(model.conv2d.state_dict()['weight'],
state_dict['weight'])
assert torch.equal(model.conv2d.state_dict()['bias'],
state_dict['bias'])
# test whether prefix is in pretrained model
with pytest.raises(AssertionError):
prefix = 'back'
_load_checkpoint_with_prefix(prefix, 'model.pth')
def test_load_checkpoint():
import os
import re
import tempfile
class PrefixModel(nn.Module):
def __init__(self):
super().__init__()
self.backbone = Model()
pmodel = PrefixModel()
model = Model()
checkpoint_path = os.path.join(tempfile.gettempdir(), 'checkpoint.pth')
# add prefix
torch.save(model.state_dict(), checkpoint_path)
state_dict = load_checkpoint(
pmodel, checkpoint_path, revise_keys=[(r'^', 'backbone.')])
for key in pmodel.backbone.state_dict().keys():
assert torch.equal(pmodel.backbone.state_dict()[key], state_dict[key])
# strip prefix
torch.save(pmodel.state_dict(), checkpoint_path)
state_dict = load_checkpoint(
model, checkpoint_path, revise_keys=[(r'^backbone\.', '')])
for key in state_dict.keys():
key_stripped = re.sub(r'^backbone\.', '', key)
assert torch.equal(model.state_dict()[key_stripped], state_dict[key])
os.remove(checkpoint_path)
def test_load_checkpoint_metadata():
import os
import tempfile
from mmcv.runner import load_checkpoint, save_checkpoint
class ModelV1(nn.Module):
def __init__(self):
super().__init__()
self.block = Block()
self.conv1 = nn.Conv2d(3, 3, 1)
self.conv2 = nn.Conv2d(3, 3, 1)
nn.init.normal_(self.conv1.weight)
nn.init.normal_(self.conv2.weight)
class ModelV2(nn.Module):
_version = 2
def __init__(self):
super().__init__()
self.block = Block()
self.conv0 = nn.Conv2d(3, 3, 1)
self.conv1 = nn.Conv2d(3, 3, 1)
nn.init.normal_(self.conv0.weight)
nn.init.normal_(self.conv1.weight)
def _load_from_state_dict(self, state_dict, prefix, local_metadata,
*args, **kwargs):
"""load checkpoints."""
# Names of some parameters in has been changed.
version = local_metadata.get('version', None)
if version is None or version < 2:
state_dict_keys = list(state_dict.keys())
convert_map = {'conv1': 'conv0', 'conv2': 'conv1'}
for k in state_dict_keys:
for ori_str, new_str in convert_map.items():
if k.startswith(prefix + ori_str):
new_key = k.replace(ori_str, new_str)
state_dict[new_key] = state_dict[k]
del state_dict[k]
super()._load_from_state_dict(state_dict, prefix, local_metadata,
*args, **kwargs)
model_v1 = ModelV1()
model_v1_conv0_weight = model_v1.conv1.weight.detach()
model_v1_conv1_weight = model_v1.conv2.weight.detach()
model_v2 = ModelV2()
model_v2_conv0_weight = model_v2.conv0.weight.detach()
model_v2_conv1_weight = model_v2.conv1.weight.detach()
ckpt_v1_path = os.path.join(tempfile.gettempdir(), 'checkpoint_v1.pth')
ckpt_v2_path = os.path.join(tempfile.gettempdir(), 'checkpoint_v2.pth')
# Save checkpoint
save_checkpoint(model_v1, ckpt_v1_path)
save_checkpoint(model_v2, ckpt_v2_path)
# test load v1 model
load_checkpoint(model_v2, ckpt_v1_path)
assert torch.allclose(model_v2.conv0.weight, model_v1_conv0_weight)
assert torch.allclose(model_v2.conv1.weight, model_v1_conv1_weight)
# test load v2 model
load_checkpoint(model_v2, ckpt_v2_path)
assert torch.allclose(model_v2.conv0.weight, model_v2_conv0_weight)
assert torch.allclose(model_v2.conv1.weight, model_v2_conv1_weight)
def test_load_classes_name():
import os
import tempfile
from mmcv.runner import load_checkpoint, save_checkpoint
checkpoint_path = os.path.join(tempfile.gettempdir(), 'checkpoint.pth')
model = Model()
save_checkpoint(model, checkpoint_path)
checkpoint = load_checkpoint(model, checkpoint_path)
assert 'meta' in checkpoint and 'CLASSES' not in checkpoint['meta']
model.CLASSES = ('class1', 'class2')
save_checkpoint(model, checkpoint_path)
checkpoint = load_checkpoint(model, checkpoint_path)
assert 'meta' in checkpoint and 'CLASSES' in checkpoint['meta']
assert checkpoint['meta']['CLASSES'] == ('class1', 'class2')
model = Model()
wrapped_model = DDPWrapper(model)
save_checkpoint(wrapped_model, checkpoint_path)
checkpoint = load_checkpoint(wrapped_model, checkpoint_path)
assert 'meta' in checkpoint and 'CLASSES' not in checkpoint['meta']
wrapped_model.module.CLASSES = ('class1', 'class2')
save_checkpoint(wrapped_model, checkpoint_path)
checkpoint = load_checkpoint(wrapped_model, checkpoint_path)
assert 'meta' in checkpoint and 'CLASSES' in checkpoint['meta']
assert checkpoint['meta']['CLASSES'] == ('class1', 'class2')
# remove the temp file
os.remove(checkpoint_path)
def test_checkpoint_loader():
import os
import tempfile
from mmcv.runner import CheckpointLoader, _load_checkpoint, save_checkpoint
checkpoint_path = os.path.join(tempfile.gettempdir(), 'checkpoint.pth')
model = Model()
save_checkpoint(model, checkpoint_path)
checkpoint = _load_checkpoint(checkpoint_path)
assert 'meta' in checkpoint and 'CLASSES' not in checkpoint['meta']
# remove the temp file
os.remove(checkpoint_path)
filenames = [
'http://xx.xx/xx.pth', 'https://xx.xx/xx.pth',
'modelzoo://xx.xx/xx.pth', 'torchvision://xx.xx/xx.pth',
'open-mmlab://xx.xx/xx.pth', 'openmmlab://xx.xx/xx.pth',
'mmcls://xx.xx/xx.pth', 'pavi://xx.xx/xx.pth', 's3://xx.xx/xx.pth',
'ss3://xx.xx/xx.pth', ' s3://xx.xx/xx.pth',
'open-mmlab:s3://xx.xx/xx.pth', 'openmmlab:s3://xx.xx/xx.pth',
'openmmlabs3://xx.xx/xx.pth', ':s3://xx.xx/xx.path'
]
fn_names = [
'load_from_http', 'load_from_http', 'load_from_torchvision',
'load_from_torchvision', 'load_from_openmmlab', 'load_from_openmmlab',
'load_from_mmcls', 'load_from_pavi', 'load_from_ceph',
'load_from_local', 'load_from_local', 'load_from_ceph',
'load_from_ceph', 'load_from_local', 'load_from_local'
]
for filename, fn_name in zip(filenames, fn_names):
loader = CheckpointLoader._get_checkpoint_loader(filename)
assert loader.__name__ == fn_name
@CheckpointLoader.register_scheme(prefixes='ftp://')
def load_from_ftp(filename, map_location):
return dict(filename=filename)
# test register_loader
filename = 'ftp://xx.xx/xx.pth'
loader = CheckpointLoader._get_checkpoint_loader(filename)
assert loader.__name__ == 'load_from_ftp'
def load_from_ftp1(filename, map_location):
return dict(filename=filename)
# test duplicate registered error
with pytest.raises(KeyError):
CheckpointLoader.register_scheme('ftp://', load_from_ftp1)
# test force param
CheckpointLoader.register_scheme('ftp://', load_from_ftp1, force=True)
checkpoint = CheckpointLoader.load_checkpoint(filename)
assert checkpoint['filename'] == filename
# test print function name
loader = CheckpointLoader._get_checkpoint_loader(filename)
assert loader.__name__ == 'load_from_ftp1'
# test sort
@CheckpointLoader.register_scheme(prefixes='a/b')
def load_from_ab(filename, map_location):
return dict(filename=filename)
@CheckpointLoader.register_scheme(prefixes='a/b/c')
def load_from_abc(filename, map_location):
return dict(filename=filename)
filename = 'a/b/c/d'
loader = CheckpointLoader._get_checkpoint_loader(filename)
assert loader.__name__ == 'load_from_abc'
def test_save_checkpoint(tmp_path):
model = Model()
optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
# meta is not a dict
with pytest.raises(TypeError):
save_checkpoint(model, '/path/of/your/filename', meta='invalid type')
# 1. save to disk
filename = str(tmp_path / 'checkpoint1.pth')
save_checkpoint(model, filename)
filename = str(tmp_path / 'checkpoint2.pth')
save_checkpoint(model, filename, optimizer)
filename = str(tmp_path / 'checkpoint3.pth')
save_checkpoint(model, filename, meta={'test': 'test'})
filename = str(tmp_path / 'checkpoint4.pth')
save_checkpoint(model, filename, file_client_args={'backend': 'disk'})
# 2. save to petrel oss
with patch.object(PetrelBackend, 'put') as mock_method:
filename = 's3://path/of/your/checkpoint1.pth'
save_checkpoint(model, filename)
mock_method.assert_called()
with patch.object(PetrelBackend, 'put') as mock_method:
filename = 's3://path//of/your/checkpoint2.pth'
save_checkpoint(
model, filename, file_client_args={'backend': 'petrel'})
mock_method.assert_called()
def test_load_from_local():
import os
home_path = os.path.expanduser('~')
checkpoint_path = os.path.join(
home_path, 'dummy_checkpoint_used_to_test_load_from_local.pth')
model = Model()
save_checkpoint(model, checkpoint_path)
checkpoint = load_from_local(
'~/dummy_checkpoint_used_to_test_load_from_local.pth',
map_location=None)
assert_tensor_equal(checkpoint['state_dict']['block.conv.weight'],
model.block.conv.weight)
os.remove(checkpoint_path)