Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
import pytest | |
import torch | |
from torch import nn | |
from mmcv.cnn import build_conv_layer, build_norm_layer | |
from mmcv.ops import (SparseConvTensor, SparseInverseConv3d, SparseSequential, | |
SubMConv3d) | |
if torch.__version__ == 'parrots': | |
pytest.skip('not supported in parrots now', allow_module_level=True) | |
def make_sparse_convmodule(in_channels, | |
out_channels, | |
kernel_size, | |
indice_key, | |
stride=1, | |
padding=0, | |
conv_type='SubMConv3d', | |
norm_cfg=None, | |
order=('conv', 'norm', 'act')): | |
"""Make sparse convolution module. | |
Args: | |
in_channels (int): the number of input channels | |
out_channels (int): the number of out channels | |
kernel_size (int|tuple(int)): kernel size of convolution | |
indice_key (str): the indice key used for sparse tensor | |
stride (int|tuple(int)): the stride of convolution | |
padding (int or list[int]): the padding number of input | |
conv_type (str): sparse conv type in spconv | |
norm_cfg (dict[str]): config of normalization layer | |
order (tuple[str]): The order of conv/norm/activation layers. It is a | |
sequence of "conv", "norm" and "act". Common examples are | |
("conv", "norm", "act") and ("act", "conv", "norm"). | |
Returns: | |
spconv.SparseSequential: sparse convolution module. | |
""" | |
assert isinstance(order, tuple) and len(order) <= 3 | |
assert set(order) | {'conv', 'norm', 'act'} == {'conv', 'norm', 'act'} | |
conv_cfg = dict(type=conv_type, indice_key=indice_key) | |
layers = list() | |
for layer in order: | |
if layer == 'conv': | |
if conv_type not in [ | |
'SparseInverseConv3d', 'SparseInverseConv2d', | |
'SparseInverseConv1d' | |
]: | |
layers.append( | |
build_conv_layer( | |
conv_cfg, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride=stride, | |
padding=padding, | |
bias=False)) | |
else: | |
layers.append( | |
build_conv_layer( | |
conv_cfg, | |
in_channels, | |
out_channels, | |
kernel_size, | |
bias=False)) | |
elif layer == 'norm': | |
layers.append(build_norm_layer(norm_cfg, out_channels)[1]) | |
elif layer == 'act': | |
layers.append(nn.ReLU(inplace=True)) | |
layers = SparseSequential(*layers) | |
return layers | |
def test_make_sparse_convmodule(): | |
torch.cuda.empty_cache() | |
voxel_features = torch.tensor([[6.56126, 0.9648336, -1.7339306, 0.315], | |
[6.8162713, -2.480431, -1.3616394, 0.36], | |
[11.643568, -4.744306, -1.3580885, 0.16], | |
[23.482342, 6.5036807, 0.5806964, 0.35]], | |
dtype=torch.float32, | |
device='cuda') # n, point_features | |
coordinates = torch.tensor( | |
[[0, 12, 819, 131], [0, 16, 750, 136], [1, 16, 705, 232], | |
[1, 35, 930, 469]], | |
dtype=torch.int32, | |
device='cuda') # n, 4(batch, ind_x, ind_y, ind_z) | |
# test | |
input_sp_tensor = SparseConvTensor(voxel_features, coordinates, | |
[41, 1600, 1408], 2) | |
sparse_block0 = make_sparse_convmodule( | |
4, | |
16, | |
3, | |
'test0', | |
stride=1, | |
padding=0, | |
conv_type='SubMConv3d', | |
norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01), | |
order=('conv', 'norm', 'act')).cuda() | |
assert isinstance(sparse_block0[0], SubMConv3d) | |
assert sparse_block0[0].in_channels == 4 | |
assert sparse_block0[0].out_channels == 16 | |
assert isinstance(sparse_block0[1], torch.nn.BatchNorm1d) | |
assert sparse_block0[1].eps == 0.001 | |
assert sparse_block0[1].momentum == 0.01 | |
assert isinstance(sparse_block0[2], torch.nn.ReLU) | |
# test forward | |
out_features = sparse_block0(input_sp_tensor) | |
assert out_features.features.shape == torch.Size([4, 16]) | |
sparse_block1 = make_sparse_convmodule( | |
4, | |
16, | |
3, | |
'test1', | |
stride=1, | |
padding=0, | |
conv_type='SparseInverseConv3d', | |
norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01), | |
order=('norm', 'act', 'conv')).cuda() | |
assert isinstance(sparse_block1[0], torch.nn.BatchNorm1d) | |
assert isinstance(sparse_block1[1], torch.nn.ReLU) | |
assert isinstance(sparse_block1[2], SparseInverseConv3d) | |