Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
import numpy as np | |
import pytest | |
import torch | |
from mmcv.ops import (RoIAwarePool3d, points_in_boxes_all, points_in_boxes_cpu, | |
points_in_boxes_part) | |
def test_RoIAwarePool3d(): | |
roiaware_pool3d_max = RoIAwarePool3d( | |
out_size=4, max_pts_per_voxel=128, mode='max') | |
roiaware_pool3d_avg = RoIAwarePool3d( | |
out_size=4, max_pts_per_voxel=128, mode='avg') | |
rois = torch.tensor( | |
[[1.0, 2.0, 3.0, 5.0, 4.0, 6.0, -0.3 - np.pi / 2], | |
[-10.0, 23.0, 16.0, 20.0, 10.0, 20.0, -0.5 - np.pi / 2]], | |
dtype=torch.float32).cuda( | |
) # boxes (m, 7) with bottom center in lidar coordinate | |
pts = torch.tensor( | |
[[1, 2, 3.3], [1.2, 2.5, 3.0], [0.8, 2.1, 3.5], [1.6, 2.6, 3.6], | |
[0.8, 1.2, 3.9], [-9.2, 21.0, 18.2], [3.8, 7.9, 6.3], | |
[4.7, 3.5, -12.2], [3.8, 7.6, -2], [-10.6, -12.9, -20], [-16, -18, 9], | |
[-21.3, -52, -5], [0, 0, 0], [6, 7, 8], [-2, -3, -4]], | |
dtype=torch.float32).cuda() # points (n, 3) in lidar coordinate | |
pts_feature = pts.clone() | |
pooled_features_max = roiaware_pool3d_max( | |
rois=rois, pts=pts, pts_feature=pts_feature) | |
assert pooled_features_max.shape == torch.Size([2, 4, 4, 4, 3]) | |
assert torch.allclose(pooled_features_max.sum(), | |
torch.tensor(51.100).cuda(), 1e-3) | |
pooled_features_avg = roiaware_pool3d_avg( | |
rois=rois, pts=pts, pts_feature=pts_feature) | |
assert pooled_features_avg.shape == torch.Size([2, 4, 4, 4, 3]) | |
assert torch.allclose(pooled_features_avg.sum(), | |
torch.tensor(49.750).cuda(), 1e-3) | |
def test_points_in_boxes_part(): | |
boxes = torch.tensor( | |
[[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.3]], | |
[[-10.0, 23.0, 16.0, 10, 20, 20, 0.5]]], | |
dtype=torch.float32).cuda( | |
) # boxes (b, t, 7) with bottom center in lidar coordinate | |
pts = torch.tensor( | |
[[[1, 2, 3.3], [1.2, 2.5, 3.0], [0.8, 2.1, 3.5], [1.6, 2.6, 3.6], | |
[0.8, 1.2, 3.9], [-9.2, 21.0, 18.2], [3.8, 7.9, 6.3], | |
[4.7, 3.5, -12.2]], | |
[[3.8, 7.6, -2], [-10.6, -12.9, -20], [-16, -18, 9], [-21.3, -52, -5], | |
[0, 0, 0], [6, 7, 8], [-2, -3, -4], [6, 4, 9]]], | |
dtype=torch.float32).cuda() # points (b, m, 3) in lidar coordinate | |
point_indices = points_in_boxes_part(points=pts, boxes=boxes) | |
expected_point_indices = torch.tensor( | |
[[0, 0, 0, 0, 0, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1]], | |
dtype=torch.int32).cuda() | |
assert point_indices.shape == torch.Size([2, 8]) | |
assert (point_indices == expected_point_indices).all() | |
boxes = torch.tensor([[[0.0, 0.0, 0.0, 1.0, 20.0, 1.0, 0.523598]]], | |
dtype=torch.float32).cuda() # 30 degrees | |
pts = torch.tensor( | |
[[[4, 6.928, 0], [6.928, 4, 0], [4, -6.928, 0], [6.928, -4, 0], | |
[-4, 6.928, 0], [-6.928, 4, 0], [-4, -6.928, 0], [-6.928, -4, 0]]], | |
dtype=torch.float32).cuda() | |
point_indices = points_in_boxes_part(points=pts, boxes=boxes) | |
expected_point_indices = torch.tensor([[-1, -1, 0, -1, 0, -1, -1, -1]], | |
dtype=torch.int32).cuda() | |
assert (point_indices == expected_point_indices).all() | |
def test_points_in_boxes_cpu(): | |
boxes = torch.tensor( | |
[[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.3], | |
[-10.0, 23.0, 16.0, 10, 20, 20, 0.5]]], | |
dtype=torch.float32 | |
) # boxes (m, 7) with bottom center in lidar coordinate | |
pts = torch.tensor( | |
[[[1, 2, 3.3], [1.2, 2.5, 3.0], [0.8, 2.1, 3.5], [1.6, 2.6, 3.6], | |
[0.8, 1.2, 3.9], [-9.2, 21.0, 18.2], [3.8, 7.9, 6.3], | |
[4.7, 3.5, -12.2], [3.8, 7.6, -2], [-10.6, -12.9, -20], [ | |
-16, -18, 9 | |
], [-21.3, -52, -5], [0, 0, 0], [6, 7, 8], [-2, -3, -4]]], | |
dtype=torch.float32) # points (n, 3) in lidar coordinate | |
point_indices = points_in_boxes_cpu(points=pts, boxes=boxes) | |
expected_point_indices = torch.tensor( | |
[[[1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [0, 1], [0, 0], [0, 0], | |
[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]]], | |
dtype=torch.int32) | |
assert point_indices.shape == torch.Size([1, 15, 2]) | |
assert (point_indices == expected_point_indices).all() | |
boxes = torch.tensor([[[0.0, 0.0, 0.0, 1.0, 20.0, 1.0, 0.523598]]], | |
dtype=torch.float32) # 30 degrees | |
pts = torch.tensor( | |
[[[4, 6.928, 0], [6.928, 4, 0], [4, -6.928, 0], [6.928, -4, 0], | |
[-4, 6.928, 0], [-6.928, 4, 0], [-4, -6.928, 0], [-6.928, -4, 0]]], | |
dtype=torch.float32) | |
point_indices = points_in_boxes_cpu(points=pts, boxes=boxes) | |
expected_point_indices = torch.tensor( | |
[[[0], [0], [1], [0], [1], [0], [0], [0]]], dtype=torch.int32) | |
assert (point_indices == expected_point_indices).all() | |
def test_points_in_boxes_all(): | |
boxes = torch.tensor( | |
[[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.3], | |
[-10.0, 23.0, 16.0, 10, 20, 20, 0.5]]], | |
dtype=torch.float32).cuda( | |
) # boxes (m, 7) with bottom center in lidar coordinate | |
pts = torch.tensor( | |
[[[1, 2, 3.3], [1.2, 2.5, 3.0], [0.8, 2.1, 3.5], [1.6, 2.6, 3.6], | |
[0.8, 1.2, 3.9], [-9.2, 21.0, 18.2], [3.8, 7.9, 6.3], | |
[4.7, 3.5, -12.2], [3.8, 7.6, -2], [-10.6, -12.9, -20], [ | |
-16, -18, 9 | |
], [-21.3, -52, -5], [0, 0, 0], [6, 7, 8], [-2, -3, -4]]], | |
dtype=torch.float32).cuda() # points (n, 3) in lidar coordinate | |
point_indices = points_in_boxes_all(points=pts, boxes=boxes) | |
expected_point_indices = torch.tensor( | |
[[[1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [0, 1], [0, 0], [0, 0], | |
[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]]], | |
dtype=torch.int32).cuda() | |
assert point_indices.shape == torch.Size([1, 15, 2]) | |
assert (point_indices == expected_point_indices).all() | |
if torch.cuda.device_count() > 1: | |
pts = pts.to('cuda:1') | |
boxes = boxes.to('cuda:1') | |
expected_point_indices = expected_point_indices.to('cuda:1') | |
point_indices = points_in_boxes_all(points=pts, boxes=boxes) | |
assert point_indices.shape == torch.Size([1, 15, 2]) | |
assert (point_indices == expected_point_indices).all() | |